
Goal Analysis:
Plan Recognition in Dialogue Systems

by
James Mayfield

Abstract

Plan recognition is an important aspect of dialogue processing, because it provides
access to the speaker's intentions. Goal analysis is plan recognition that focuses on
inferring the speaker's goals. This dissertation describes a goal analyzer called PAGAN

that is part of the UNIX Consultant project.

This dissertation makes four main contributions. First, it provides a theory of how
the merits of an explanation of an utterance may be judged. There are three criteria for
making such judgments: the applicability of the explanation to the system's needs; the
grounding of the explanation in what is already known of the speaker and of the dia
logue; and the completeness of the explanation's coverage of the speaker's goals.

The second main contribution of this work is the introduction of a representation
for plans and goals that solves two problems inherent in many approaches to plan
representation. First, there is usually an inadequate distinction between the effects of an
action and the effect that the action was intended to produce. Secondly, the traditional
notion of a precondition fails to distinguish between heuristic planning knowledge and
knowledge of the defining properties of actions. The solution to these problems, called a
planfor, is a relation between a type of goal and a sequence of hypothetical actions that
constitutes a possible method of achieving a goal of that type.

The third contribution of this work is a detailed analysis of ambiguity. The sources
of ambiguity include ambiguities at the sentence and utterance levels, ambiguity arising
from the existence of multiple explanatory plan schemas, ambiguity arising when it is
possible to place a mentioned concept into more than one competing category, and ambi
guity arising when it is unclear which concept is the topic of a particular relation (such as
a question). This dissertation suggests a unified approach to handling these types of
ambiguities.

The fourth contribution of this work is the introduction of a method for determin
ing how much processing of an utterance should be done. It is based on an assessment of
the completeness of the explanation, and on an assessment of the practicability of con
tinuing the processing.

111

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Goal Analysis: Plan Recognition in Dialogue Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Plan recognition is an important aspect of dialogue processing, because it provides access to the speaker’s
intentions. Goal analysis is plan recognition that focuses on inferring the speaker’s goals. This dissertation
describes a goal analyzer called PAGAN that is part of the UNIX Consultant project. This dissertation
makes four main contributions. First, it provides a theory of how the merits of an explanation of an
utterance may be judged. There are three criteria for making such judgements: the applicability of the
explanation to the system’s needs; the grounding of the explanation in what is already known of the
speaker and of the dialogue; and the completeness of the explanation’s coverage of the speaker’s goals. The
second main contribution of this work is the introduction of a representation for plans and goals that solves
two problems inherent in many approaches to plan representation. First, there is usually an inadequate
distinction between the effects of an action and the effect that the action was intended to produce.
Secondly, the traditional notion of a precondition fails to distinguish between heuristic planning knowledge
and knowledge of the defining properties of actions. The solution to these problems, called a planfor, is a
relation between a type of goal and a sequence of hypothetical actions that constitutes a possible method of
achieving a goal of that type. The third contribution of this work is a detailed analysis of ambiguity. The
sources of ambiguity include ambiguities at the sentence and utterance levels, ambiguity arising from the
existence of multiple explanatory plan schemas, ambiguity arising when it is possible to place a mentioned
concept into more than one competing category, and ambiguity arising when it is unclear which concept is
the topic of a particular relation (such as a question). This dissertation suggests a unified approach to
handling these types of ambiguities. The fourth contribution of this work is the introduction of a method
for determining how much processing of an utterance should be done. It is based on an assessment of the
completeness of the explanation, and on an assessment of the practicability of continuing the processing.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

170

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

iv

Acknowledgements•

This dissertation would not have been possible without the guidance of my advisor,

Robert Wilensky. He conceived the u:r-.rrx Consultant and provided the foundation for

the work I present here. M;y other readers, Lotfi Zadeh and Paul Kay, were patient and

always gracious. I also want to thank the other members of my committee, Richard Karp

and Richard Alterman, for giving me a vote of confidence in the fledgling stages of this

work.

The Berkeley Artificial Intelligence Research Lab is an amazing source of enlight

enment, diversion (principal investigator: Dan Jurafsky), and dubious humor (principal

investigator: Michael Braverman). Jim Martin and Marc 'Diet Coke' Luria, whose

tenure at BAIR closely paralleled my own, provided among other things reams of good

advice about what to do and what not to do in constructing a dissertation. They were

especially skilled at deciphering cryptic scrawls on drafts of this and other theses. Other

members of BAIR who assisted me in the production of this dissertation are (in reverse

alphabetical order by last letter) Dan 'Boychick' Jurafsky, Charley Cox, Dekai Wu, Lisa

'Strange Greeting' Rau, Anthony Albert, Yigal Arens, Paul Jacobs, Margaret Butler,

Terry 'Dr. Fell' Regier, Eric Karlson, David Chin, Michael 'Moooo' Braverman, Joe

Faletti, Peter Norvig, and Nigel 'If I had a gun' Ward.

I doubt that much of anything would get done at BAIR without the helping hand of

Sharon 'What are you going to do, run me over?' Tague. Her special mixture of opti

mism, provocative conversation, and heterodoxy made life in Evans hall seem less like

life in Evans hall than it probably was. Thank you, Sharon.

Five long-time roommates, Ross Jhaka, Richard Berger, Rene Peralta, Steve Lewis,

and McGannahan Skjellyfetti, gave me both the pleasure of their company during my

stay in Berkeley and the layperson's perspective on my work. Steve in particular demon

strated by example the value of a steady, consistent dedication to one's work; for this I

am deeply indebted to him.

Two people from my pre-graduate school days steered me toward the study of

natural language processing. Eric Roberts imparted to me both a love of and a solid

foundation in computer science. He also taught me quite a bit about juggling, Whovian

ism, -social responsibility, and a host of other topics. Michael Creech introduced me to

natural language processing; I ignored his warnings and got caught up in his enthusiasm.

::iponsored by the Defense Advanced Research ProjectS Agency (DoD) monitored by Space and Naval

Warfare Systems Command under Contract N00039-88-C-0292; and through the Office of Naval Research.

under Contraet N00014-80-C-0732.

v

For the past year and some months, the Computer Science Department at the
University of Maryland, Baltimore County has provided me with the resources I have
needed to complete this dissertation. Samuel Lomonaco, the department Chair, has not
only assisted me in many ways on this project, but has also put together a superb environ
ment for research in computer science.

My parents, Clifton and Jane Mayfield, have always seemed to supply just the right
mixture encouragement and noninterference. Their commitment to education and their
unflagging personal support have helped me through many tough times (more than one
associated with this dissertation), and have sweetened the not-so-tough ones. I also want
to thank my siblings, Clif, Beth, and Marcia, who helped me with this project more than
they realize.

My constant companion and friend almost from the start of this project has been
Karen Clark. Although she has been disturbingly good at distracting me from my writ
ing, she has also coaxed me along at crucial points. She gave me a rhetorician's view of
my subject matter and tried her best (often unsuccessfully) to hold my butchery of the
English language in check. I look forward to her distractions long after I've forgotten
that I wrote this dissertation.

Lastly, I'd like to thank Jim Martin for writing Marc Luria's acknowledgements.

VI

Contents

Chapter 1: Introduction .. 1

1.1. Goal Analysis... 1

1.2. Background 3

1.2.1. The UNIX Consultant 3

1.2.2. KODIAK ... 8

1.3. Contributions of This Work ... 9

1.4. An Overview of the Goal Analysis Algorithm .. 10

1.4.1. Step Zero: Interpreting the Utterance ... 11

1.4.2. Step One: Finding an Explanation .. 11

1.4.3. Step Two: Handling Ambiguity .. 13

1.4.4. Step Three: Extending an Explanation ... 14

1.5. An Example -... 15

1.5.1. Reading The Traces .. 15

1.5.2. A Sample Trace .. 16

Chapter 2: Previous Research .. 24

2.1. Plan Recognition 24

2.2. Dialogue Models and User Models ... 29

Chapter 3: A Theory of Explanation .. 31

3.1. Criteria For Evaluating Explanations .. 32

3.2. The Principle Of Applicability ... ~............................ 32

3.2.1. Applicability of Composition ... 33

3.2.2. Applicability of Content ... 34

3.2.3. Applicability of Granularity ... 35

3.3. The Principle of Grounding ... 35

3.3.1. How an Explanation Attaches to a Plan ... 37

3.3.1.1. Plan Continuation .. 37

3.3.1.2. Plan Delay .. 38

3.3.1.2.1. Clarification Delay .. 39

Vll

3.3.1.2.2. Skepticism Delay .. 39

3.3.1.2.3. Extra-Schematic Delay ... 40

3.3.1.3. Plan Rejection .. 40

3.3.1.4. The Relationship between Plan Delay and Plan Rejection........................ 41

3.3.2. Connecting an Explanation to a Goal ~....................... 41

3.3.2.1. Goal Achievement ... 41

3.3.2.2. Goal Scrutiny .. ,.. 42

3.3.2.3. Goal Rejection ... 43

3.4. The Principle of Completeness .. 43

3.4.1. Depth Completeness ... 44

3.4.2. Breadth Completeness .. 44

3.5. Summary .. 46

Chapter 4: Representation of Plans and Goals ... 48

4.1. STRIPS Operators and Their Descendants .. 48

4.2. Scripts .. 50

4.3. The Intended Effect Problem... 51

4.4. The Precondition Problem ... 52

4.5. The Planfor Representation ... 53

4.5.1. Solution to the Intended Effect Problem .. 54

4.5.2. Solution to the Precondition Problem ... 55

4.5.3. Processing Advantages ... 57

4.6. Summary .. 58

Chapter 5: Finding an Explanation .. 59

5.1. Meeting an Expectation ... 59

5.2. Finding an Intentional Explanation ... 60

5.3. Finding a Non-Intentional Explanation ... 60

5.4. Implementation .. 61

5.4.1. The Structure Matching Paradigm .. 61

5.4.2. The Local Categorization Paradigm ... 62

5.4.2.1. Concretion.. 63

5.4.2.2. Equation ... 63

Processing Example 64

5.4.2.3. Advantages of the Local Categorization Paradigm 65

5.4.3. Finding a Known Explanation: Expectation Matching 66

Processing Example 67

5.4.4. Finding a New Explanation: Planfor Retrieval ... 68

Vlll

5.4.4.1. Finding Planfors in Long-term Memory.. 68

Processing Example 68

5.4.4.2. Incorporating an Explanation into the Dialogue Representation............... 71

Processing Example .. 71

5.4.5. Finding Thematic and Non-Intentional Explanations 73

Processing Example 73

5.5. Summary .. 74

Chapter 6: Sources of Ambiguity .. 75

6.1. Sentence Ambiguity... 76

6.2. Utterance Ambiguity .. 77

6.2.1. Referential Ambiguity .. 77

6.2.2. Categorization Ambiguity .. 78

6.2.2.1. A Taxonomy of Question Types.. 78

6.2.2.2. Question Miscategorization ... 81

6.2.3. Topic Ambiguity... 82

6.3. Goal Ambiguity ... 85

6.4. Implementation -- The Detection of Ambiguity .. 87

6.4.1. Detecting Lexical, Structural, and Referential Ambiguity 88

6.4.2. Detecting Categorization Ambiguity .. 88

Processing Example .. 89

6.4.3. Detecting Topic Ambiguity .. 91

Processing Example ... :.... 91

6.4.4. Detecting Goal Ambiguity .. 92

Processing Example 93

6.4.5. Determining Whether Two Interpretations are Incompatible....................... 95

6.5. Summary .. 95

Chapter 7: Handling Ambiguity .. 97

7.1. Ambiguity Resolution .. 98

7.1.1. Rejecting an Interpretation ... 99

7 .1.1.1. The User Model as Source of Know ledge 99

7 .1.1.2. Sources of Knowledge Conflicts Within an Explanation 100

7 .1.1.2.1. Conflicts with the Goal of an Explanation 100

7 .1.1.2.2. Conflicts with the Plan of an Explanation 102

7 .1.1.2.3. Conflicts with the Entirety of an Explanation ... 103

7.1.1.3. Resolving Knowledge Conflicts .. 104

7.1.2. Selecting an Interpretation .. 104

ix

7.2. Disregard of Ambiguity ... 105

7.3. Unresolved Ambiguity... 106

7.4. Implementation .. 107

7 .4.1. Detecting and Resolving Knowledge Conflicts .. 107

Processing Example 109

7 .4.2. Selecting an Interpretation .. 113

Processing Example .. 113

7.4.3. Delaying Ambiguity Resolution ... 116

Processing Example 116

7.5. Summary .. 122

Chapter 8: Extending an Explanation ... 123
8.1. Previous Approaches 123

8.2. Deciding When to Chain.. 126

8.2.1. Determining that an Explanation Chain is Complete 127

8.2.2. Determining that an Explanation Chain is Incomplete 128

8.2.3. Determining the Cost of Chaining -- Difficulty of Analysis 128

8.2.4. Determining the Benefits of Chaining -- Curiosity 129

8.3. External Control of Chaining ... 130

Processing Example .. 131

8.4. Implementation .. 134

8.4.1. Determining Instrumentality and Applicability .. 134

8.4.2. Identifying Strong Expectations ... 135

Processing Example .. 135

8.4.3. Determining Difficulty of Analysis .. 137

8.4.4. Determining Curiosity .. 138

Processing Example .. 138

8.5. Summary ~.. 141

Chapter 9: Implementation and Extended Example 142

9.1. Implementation of KODIAK ... 142

9.2. System Architecture and Performance .. 144

9.3. Detailed Trace.. 144

Chapter 10: Conclusions ... 154

References ... :.. 156

X

Chapter 1

Introduction

1.1. Goal Analysis

Consider the following conversations between a novice computer user who is try

ing to find out how to delete one of her1 files, and two consultants. The user's dialogue

with a competent consultant might go something like this:

User: Can you tell me how to delete a file?
Consultant: Use rm.

In contrast, consider the same dialogue held with an incompetent consultant:

User: Can you tell me how to delete a file?
[1] Consultant: I sure can.

User: What is it?
[2] Consultant: What is what?

User: What is a way to delete a file?
[3] Consultant: It is a method which, when executed, causes an existing file to

become non-existent.
User: No, tell me how I can delete a file.

[4] Consultant: By deleting the file called -/.login.
User: But I want to delete the file transcript.34.

[5] Consultant: Thank you for sharing your desires.
User: Forget it! Goodbye.

[6] Consultant: Transcript of session saved in file transcript.35. Goodbye.

I Throughout this thesis, the user described in the examples is female. The selection of gender was determined by a flip

of the coin.

1

2

The user had less success in this dialogue because the consultant was consistently unable

to correctly infer the goals she was pursuing. For example, in the first response, the con

sultant has interpreted as a direct question what is intended by the user to be an indirect

request to be told how to delete a file. In the third response, the consultant has treated a

question that asks for a specific version of a specified concept, in this case file deletion,

as a request for a description of what it means to be a method for file deletion. In the

fourth response, the consultant has misunderstood which component of the question

should be further specified. The consultant is only successful in addressing the user's

goals in its very last utterance.

This thesis is an approach to the problem of goal analysis. Briefly stated, goal

analysis is the process of determining what goals a speaker is addressing in making an

utterance. Goal analysis then is a crucial component of a consultant system, and in fact

of any dialogue system.

A goal analyzer is a system that performs goal analysis. The purpose of a goal

analyzer is threefold:

1. To infer part of the 'meaning' of an utterance
2. To suggest behavior
3. To simulate users' understanding

The first purpose of a goal analyzer is to continue the process, begun by the parser and

semantic interpreter, of inferring the 'meaning' of an utterance. I construe the word

'meaning' here to include both speaker's meaning (that is, the meaning the speaker

intends to convey in making the utterance), and any additional facts the hearer may be

able to glean from the utterance, regardless of whether the speaker intended to convey

them. Together, these components of the 'meaning' of an utterance form an explanation

of that utterance. For example, an explanation of the utterance:

User: How do I delete a file?

might include (among others) the following facts:

1. The user wants to know how to delete a file.
2. The user wants uc to tell her how to delete a file.

3. The user wants to delete a file.
4. The user wants to free up disk space.

Secondly, a goal analyzer provides the system that uses it with suggestions for

future behavior. Such suggestions are of two types. One type of suggested behavior is

the continuation of a plan initiated by the user, as when the system answers a question

that the user has asked. The other type of suggested behavior is the planning and execu

tion of a new method for achieving an inferred goal. For example, if the user asks a

question of the system, the system may indicate some other way that the user can find the

answer to the question. Notice that these two types of responses are only suggestions, in

that the system is free to pursue some other tack; the goal analyzer does not dictate the

'1..
3

operation of the system as a whole. For example, the system could decide to ignore the
user's goals altogether, and instead pursue its own agenda in the dialogue.

The third purpose of a goal analyzer is to simulate the user's understanding of the
system's utterances. In addition to analyzing the user's utterances, the system can invoke
the goal analyzer on its own utterances. Doing so can give the system valuable informa
tion about how the user is likely to interpret the system's utterances. For example, per
forming goal analysis on its own utterance might alert the system to a potential misin
terpretation of that utterance.

This dissertation describes a goal analyzer called PAGAN (Plan And Goal
ANalyzer) that serves these purposes. PAGAN is both a theoretical approach to goal
analysis and an implementation of this approach. However, it will always be obvious
from context which of these meanings of 'PAGAN' is intended when I use the term.

1.2. Background

There are two important systems that form the background against which the
theories described herein were developed. The first is the UNIX Consultant [Wilensky et
al. 1986, 1989], the system in which the implementation of PAGAN is designed to
operate; the second is KODIAK [Wilens~y, 1987a], the representation language that
PAGAN uses to represent both the user's utterances and its knowledge about dialogue and
about the world. The UNIX Consultant and KODIAK are described in detail in the fol
lowing sections.

1.2.1. The UNIX Consultant

The work presented herein was done in conjunction with the UNIX Consultant
(UC) project at the University of California, Berkeley [Wilensky et al. 1986, 1989]. uc
is designed to simulate a computer consultant. Its purpose is to aid novice UNIX users
by answering questions and engaging in limited dialogue. A picture of uc's overall
architecture is shown in Figure 1.1.

uc's processing of a user's utterance is broken down into several stages. First, the
utterance is parsed, and a representation of the utterance expressed in KODIAK (see
below) is produced. Simple categorization inferences are made on this representation by
a mechanism called a concretion mechanism (See Chapter 5 for a description of concre
tion inferences), and the result is handed as input to PAGAN. PAGAN determines what the
user's goals were in making the utterance, and hands the plan and goal structure it pro
duces to the UCEgo component [Chin 1988]. UCEgo is the portion of the system that
serves as an agent; it decides which goals UC should pursue. If necessary, the KIP
planner [Luria 1988] is invoked to solve a- domain goal. Finally, UC's response is
selected by the UCExpress mechanism and generated in English by the UCGen generator.

4

KIP
Planner

English output

KNOME
User Model

Figure 1.1. Organization of the UNIX Consultant

Running alongside these components is the KNOME user model [Chin 1988].

There has been some controversy in the literature over whether dialogue models and user

models can or should be separate entities (see Kobsa and Wahlster [1987] for a discus

sion of these issues). I claim that it is important to separate the two for the purposes of

disambiguation (as described in Chapter 7). Thus, I break up the task of inferring and

managing knowledge about dialogue participants into user modeling and goal analysis.

User modeling encompasses the collection and maintenance of static knowledge of the

user, that is, knowledge that is not likely to change drastically from one moment to the

next. User modeling under my definition then is concerned with keeping track of what

the speaker does and does not know. While individual facts may be added to or deleted

from the user model over the course of a dialogue, in aggregate the model remains rela

tively stable.

5

Goal analysis on the other hand is concerned with the more dynamic types of

knowledge about the user: what goals the user holds, what plans she is using to try to

achieve those goals, and what kinds of responses she expects from her audience. Of

course, in overview, the user's high-level domain goals may change very little over the

course of a dialogue. However, the user's dialogue-level goals will change rapidly as the

dialogue moves from one domain topic to another.

The following trace shows several sessions with UC. It demonstrates the context in

which PAGAN operates. The trace and comments are taken directly from Wilensky et al.

[1989].

%UC
Welcome to UC (Unix Consultant) version 3.23
To a UC '#' prompt, please type in your questions
about the Unix file system in English.
To leave, just type a '"'D' or '(exit)'.

Hi.
How can I help you?

Is m used to rename files?
No, m is used to read news.
To rename a file to another file, use mv.
For example, to rename the file named foo to the file named foo 1,

type 'mv foo foo 1 '.

In this example, uc hypothesized that the user asked the question in order to

get an answer to some underlying question. In particular, PAGAN hy

pothesized possible goals of wanting to know how to rename a file and wanting

to know what 'rn' does. Since the answer to the direct question is negative,

UCEgo realizes that the underlying goals are not addressed by this answer,

and, therefore, attempts to answer them. This results in the extended answer.

#How can I crash the system?
I'm sorry, I cannot tell you.

In this example, uc detected a conflict between its goal of helping the user and

that of preserving the integrity of the system. It resolved this conflict in favor

of the latter goals. However, since it could not accommodate the user's re

quest, it attempts to be polite by apologizing to the user.

What does Is -v do?
Ls does not have a -v option.

6

Here the user asks about a non-existent command option. Actually, the UNIX
'ls' command ignores options that it does not recognize, so the consultant
could have answered truthfully by saying that 'Is -v' causes one's directory to
be listed. It did not, because PAGAN interpreted the request as a question
about the function associated with the command. UCEgo reasons that, since (1)
it doesn't know about such an option, and (2) it knows all the options to all
simple commands, and (3) 'Is' is a simple command, the user must have a
misconception. It then generates the goals of correcting the misconception,
which results in the answer shown. Note that VC uses an open world hy
pothesis together with metaknowledge to determine whether it knows some
facts about UNIX.

In the next example, two different sessions with two different users are
represented.

%UC
Welcome to UC (Unix Consultant) version 3.23
To a UC '#'prompt, please type in your questions
about the Unix file system in English.
To leave, just type a ·~o· or '(exit)'.

Hi.
How can I help you?

#How can I delete a file?
Userm.
For example, to delete the file named foo, type 'tm foo'.

What does rwho do?
R who is used to list all users on the network, the users' tty, the users'

login time, and the users' idle time.

%UC
Welcome to UC (Unix Consultant) version 3.23
To a UC '#'prompt, please type in your questions

about the Unix file system in English.
To leave, just type a ·~o· or '(exit)'.

Hi.
How can I help you?

How can I find out the inode of a file?

Use ls-i.

What does rwho do?

Rwho is like who, except rwho lists all users on the network.

Because he asked such a simple question, the first user was diagnosed by

KNOME as being a novice user. This resulted in the answer to his first ques

tion being illustrated by an example, and the extended format of his answer to

second. In contrast, the second user asked about a relatively technical aspect

of UNIX. Thus, this user is likely to be a relatively sophisticated user. As a

result, the answer to that user's first question was not illustrated with an exam

ple. For the same reason, UC presumes that the second user knows about the

'who' command, and takes advantage of this knowledge in generating the

response.

Note this example also illustrates UC' s ability to generate different types of

responses. This example was able to use a simile format, because the com

mand to be generated was thought to be sufficiently close to one uc believes

the user to already know.

The next example illustrates some aspects ofUC' s ability to generate plans.

How do I print Jim's file on the lineprinter?

Use lpr. This plan will not work if you don't have read

permission on Jim's file.

In this example, KIP, uc' s domain planner, suspects that the plan it is suggest

ing might fail. This is because the plan involves printing someone else's file,

and KIP knows that the lack of appropriate permission in such cases is a likely

source of plan failure. However, since it does not know a more certain plan, it

delivers the suspect one, but warns the user of the possible problem.

A fact about a possible problem with a plan is called a concern. Concerns are

explicitly represented in uc' s knowledge base. At this stage, uc' s knowledge

of concerns is fragmentary. Thus, questions above that have the same struc

ture as this one may not cause any warnings to be generating simply because

the requisite knowledge is lacking.

#Who is on the system?

I'm sorry, I don't know. Use users to find out who is

on the system.

Here UC fails to answer the user's question, because it does not have any way

of running UNIX commands itself. Its failure causes it to apologize. uc then

forms the goal of the user knowing how to determine the requested informa

tion. It addresses this goal, which leads to the second part of the response.

7

8

domain

~
range range

domain

~ D

Figure 1.2. KODIAK Examples

This diagram shows the KODIAK definitions of the concepts STATE, STATE-CHANGE, and
DELETIOK A STATE has a relation for the state object, and one for the value of that object.
A STATE-CHANGE is defined in terms of a STATE. DELETION is a subcategory of STATE·

CHANGE. This diagram does not depict the manner in which the two states of a STATE·

CHANGE are forced to be states of the same object; a mechanism for doing this is described
in Chapter 5.

1.2.2. KODIAK

The second main influence on this work is the KODIAK knowledge representation

language. Choice of internal representation is the most important influence on a natural

language processing system. Because a hierarchical representation with an inheritance

mechanism is an absolute necessity if conciseness of representation is to be achieved, I

use the KODIAK knowledge representation language. KODIAK is a semantic network

representation language that represents facts about the world as a set of concepts, called

absolutes, related to one another by relations. An example of the use of KODIAK in

representing knowledge about states, state changes, and deletion is shown in Figure 1.2.

Throughout this dissertation, a set of conventions are used for graphically depicting

KODIAK objects. Absolutes, such as STATE and DELETION, are drawn as large rectangu

lar boxes. Two absolutes with the same name refer to the same absolute. Relations such

9

as START-STATE and FINAL-STATE are drawn as small square boxes. Two relations with
the same name represent unique children of the relation with that name. The objects con
nected by a relation are attached pictorially by arrows emanating from the relation box.
These arrows may be labeled with the name of the aspectual they represent. An aspec
tual is in many ways like a slot in a frame system, except that it is a full-fledged KODIAK

entity. Finally, inheritance in KODIAK flows through dominate relations, which are
drawn as arrows with the label D. For a complete discussion of KODIAK and the issues
that led to its development, see Wilensky [1987a].

1.3. Contributions of This Work

There are four main contributions that are made by this thesis:

1. A theory of what it means to be a good explanation
2. A representation that solves problems with traditional representations
3. A detailed analysis of ambiguity and how it can be handled
4. A method for determining how much processing should be done

First, I present a theory of how an explanation of an utterance may be judged as to its
merits as an explanation. I propose three criteria for making such judgements:

1. Applicability
2. Grounding
3. Completeness

The first criterion is the applicability of the explanation to the needs of the system that
will use it. The applicability criterion is further divided into three types of applicability:
applicability of composition, which states that the types of components that form an
explanation must be applicable; applicability of content, which holds that each of the
components of a particular explanation must be applicable; and applicability of granular
ity, which states that an explanation must contain the appropriate level of detail. The
second criterion is the grounding of the explanation in what is already known of the
speaker and of the dialogue. Finally, the third criterion is the completeness of the
explanation's coverage of the goals that motivated the production of the utterance. There
are two aspects of the completeness criterion: depth completeness is the completeness of
a single chain of inferences about an utterance; and breadth completeness is coverage of
all aspects of the utterance. An explanation of an utterance is a good explanation of that
utterance to the extent that it meets these three criteria. In addition to forming the basis
of a method for evaluating the merit of an explanation, these criteria are useful in design
ing a goal analysis algorithm; this is because they specify the form that the output of the
algorithm must take. Chapter 3 provides a detailed look at these criteria.

The second main contribution of this work is the introduction of a representation
for knowledge about plans and goals that solves two major problems inherent in many of
the previous approaches to plan and goal representation. The first of these problems, the
intended-effect problem, arises because there is usually an inadequate distinction made

10

between the effects of an action and the effect that the action was intended to produce.

The second problem, the precondition problem, arises because the traditional notion of a

precondition fails to distinguish between two different types of knowledge: heuristic

planning knowledge and knowledge of the defining properties of actions. The solution to

these problems, called a planfor, is a relation between a type of goal and a sequence of

hypothetical actions (called a plan) that constitutes a possible method of achieving a goal

of that type. This representation is the subject of Chapter 4.

The third contribution of this work is a detailed analysis of ambiguity. This

analysis is divided into three parts. First, Chapter 5 describes how a single explanation of

an action can be found. Chapter 6 then discusses the sources of ambiguity. These

sources include widely-studied ambiguities at the sentence and utterance levels (lexical

ambiguity, structural ambiguity, and referential ambiguity), ambiguity arising from the

existence of multiple explanatory plan schemas at the plan recognition level, and two

additional categories of ambiguity that occur at the utterance level. The first of these,

called categorization ambiguity, arises when it is possible to place a given concept into

more than one competing category in the knowledge hierarchy. The second, called topic

ambiguity, arises when it is unclear as to which concept is the topic of a particular rela

tion (such as the topic of a question). Chapter 7 deals with ways to handle these types of

ambiguity. Several plan understanding systems have proposed heuristics for disambi

guating an utterance once two or more potential explanations for the utterance have been

detected. Chapter 7 incorporates these and other heuristics into a generalized framework

for handling ambiguity.

The fourth contribution of this work is to introduce a method for determining how

much processing of an utterance should be done. There have been two traditional

approaches to this problem. Some systems discontinue processing when and only when a

particular condition holds. This condition may be related to the explanation itself (as in

'continue processing until a domain goal has been inferred'), or it may be related to the

understanding process (as in 'discontinue processing when an ambiguity is encoun

tered'). The other traditional approach is to continue processing until no more inferences

can be made. In Chapter 8, I present an algorithm for determining when to continue pro

cessing that allows greater flexibility in making its decisions than could be accommo

dated by previous approaches.

1.4. An Overview of the Goal Analysis Algorithm

The traditional approach to plan recognition, found in seminal works by Wilen

sky[l978] and Allen [1979] is to chain together a sequence of abductive inferences.

PAGAN operates within this paradigm, using planfors to suggest such inferences. The

basic goal analysis algorithm has three steps:

1. Find potential explanations of the speaker's utterance

2. Resolve any ambiguities
3. Determine whether to continue the analysis

,

11

First, potential explanations of the speaker's utterance must be found. Explanations may

be found either among the actions that PAGAN is expecting to observe (in which case, the
algorithm terminates), or among the explanation schemas (planfors) that PAGAN has

stored in long term memory. The second step, when more than one interpretation of the

utterance is extant, is to try to resolve the ambiguity. Thirdly, PAGAN must determine

whether it should look for a continuation of the explanation by explaining the goal just

inferred. If it decides to do so, these three steps are applied recursively to the inferred

goal. Because the recursive step(s) do not differ significantly from the steps taken to
analyze the utterance itself, any reference to explanation of an utterance within the

remainder of this thesis should be taken to apply both to the explanation of utterances,

and to the explanation of inferred goals. A diagram of the flow of control of the algo
rithm is shown in Figure 1.3. The steps of the algorithm, and the way in which those

steps build explanations that meet the criteria for good explanations, are explained in

more detail in the following sections.

1.4.1. Step Zero: Interpreting the Utterance

Before goal analysis can begin, the user's utterance must be read and converted to
an internal representation. This process produces one or more interpretations of the

user's utterance. These interpretations must be marked as being mutually incompatible
before being handed to PAGAN for goal analysis. This allows PAGAN to address ambigui

ties that prior components of the system have been unable to resolve.

1.4.2. Step One: Finding an Explanation

The first step of the goal analysis algorithm is to find one or more potential expla

nations of the utterance. This step is described in detail in Chapter 5. There are three

places that PAGAN may find an explanation for an utterance:

1. Among its expectations of speaker actions
2. Among the abstract planfors in its knowledge base
3. Among the non-intentional explanations in its knowledge base

First, an explanation may be found among the expectations that are held about future

actions of the speaker. Such expectation matching builds explanations that meet the

grounding criterion, because they relate the utterance to the previous dialogue structure.

For example, if the system were expecting an answer to a yes/no question, the statement:

User: No.

could easily be matched against that expectation.

12

Parser -------

Mark Interpretations

as Incompatible

no

Look up planfor

explanations and

add them to list

or candidates

Resolve

ambiguities

Eliminate

Incompatible

Interpretations

Figure 1.3. The Goal Analysis Algorithm

Secondly, explanations may be found among the collection of abstract plan sche

mas, which I call planfors, stored in the long-term knowledge base. For example, the

general notion of a question and answer sequence as a plan for the goal of learning some

thing could provide an explanation for a query such as:

' ._.

13

User: How do I copy a file?

Building explanations based on planfors causes them to meet the applicability of compo

sition and the applicability of granularity criteria, to the degree that the planfors in the

knowledge base reflect the needs of the system. The use of planfors also aids in building

explanations that meet the breadth completeness criterion, since a single utterance might

be explained by multiple compatible planfors.

Finally, explanations may be found among the set of non-intentional explanations

in the knowledge base. For example, the non-intentional explanation 'computer users

often want to edit files' might be used to explain why a particular user wants to edit a

particular file. The use of a non-intentional explanation does not necessarily assist in

building explanations that meet the criteria discussed above, but it does offer a method

for terminating a sequence of inferences about an utterance.

1.4.3. Step Two: Handling Ambiguity

The second main step of the goal analysis algorithm is to handle any ambiguities

that have arisen. Ambiguity can arise because the sentence used in the utterance is ambi

guous, because the use of the sentence is ambiguous, or because the utterance as a whole

(or one the goals inferred to explain the utterance) might be part of more than one plan.

The various sources of ambiguity are discussed in detail in Chapter 6.

Chapter 7 describes how ambiguities are handled. There are two ways to handle

ambiguity:

1. Resolve the ambiguity, and continue processing
2. Ignore the ambiguity, processing each alternative individually

First, the ambiguity can be resolved. Ambiguity resolution can itself be done in two

ways:

1. By rejecting all incorrect interpretations, leaving the correct one
2. By selecting the correct interpretation outright

Rejection of an interpretation is done by finding a conflict between some portion of that

interpretation and some other knowledge held by the user model. Such conflicts are

called knowledge conflicts. If the strength of belief in the conflicting knowledge from the

user model is greater than the strength of belief in the interpretation of the utterance, then

that interpretation can be rejected. For example, if it is known that the user believes that

the system has extensive knowledge of UNIX, then the direct interpretation of the ques

tion:

14

User: Can you tell me how to copy a file?

can be eliminated.

The other way that an ambiguity can be resolved is by selecting one of the compet
ing interpretations as the correct one. Such a selection can be made if one of the
interpretations matches an expected action, as described above. When such a match

occurs, that interpretation is selected as the correct one. All other interpretations that
conflict with the selected one are then rejected. For example, if it is known that the user

wants to free up disk space, then an interpretation of an utterance that presupposes that

the user wants to delete a file can be selected at the expense of any rival explanations.

If an ambiguity cannot be resolved, it is ignored. That does not mean that it can

never be resolved. Rather, as each interpretation is extended by subsequent iterations of
the algorithm, the ambiguity can be re-examined. If PAGAN is never able to resolve the
ambiguity, it is treated as an ambiguity that should be detected by the system as a whole.

Subsequent components of the system are then free to pursue other techniques for han
dling the ambiguity, such as initiating a clarification subdialogue, or addressing each of

the interpretations individually.

1.4.4. Step Three: Extending an Explanation

The third step of the goal analysis algorithm is to determine whether the inferred
explanation for the utterance should itself be explained. This decision is based on an
assessment of the depth completeness of the explanation chain, as described above. An

explanation that is complete is not extended any further. An explanation is complete
when it meets some expectation instantiated by previous dialogue, or when the most
recently inferred goal lies beyond the system's domain of expertise. An explanation that

is incomplete is subjected to further analysis by the algorithm. An explanation is incom
plete when the inferred goal is always used in service of some other goal, or when the

dialogue model contains a strong expectation that has not yet been met. Thus, the third

step of the algorithm helps to build explanations that meet the applicability of content

criterion.

If none of these conditions holds, then it is not immediately clear whether the

explanation is complete. In such cases, two additional assessments are made to deter
mine whether processing should continue. First, the system determines its level of

curiosity about the explanation. This is compared against an estimate of the difficulty of
continuing the analysis. If the level of difficulty is higher, processing is terminated. In

such cases, the production of a good explanation is sacrificed in order to conserve system

resources. On the other hand, if the level of curiosity about the explanation is higher,

processing continues.

!

15

1.5. An Example

This section shows the main aspects of PAGAN's processing of an utterance, via a

commented trace. First, I describe the use of traces throughout this dissertation. Then I

step through such a trace. The trace provides a taste of the theory espoused in this disser

tation, and illustrates some of the issues that arise in the implementation of a goal
analyzer. Finally, a second trace shows how PAGAN's processing fits into the processing

performed by uc as a whole.

1.5.1. Reading The Traces

Throughout this dissertation, the theories I put forth are illustrated with trace out

put of the PAGAN program. The following font conventions are used in the traces.

KODIAK objects are written in BOLD CAPITALS. The sentence that PAGAN is processing

is shown at the beginning of each trace, and is written in (BOLD CAPITALS) surrounded

by parentheses within the body of the trace. Descriptions produced by PAGAN as it runs

are written in roman, and comments added by hand after-the-fact are written in italics. In

some places, it is illuminating to depict a portion of the representation network produced

by PAGAN as it processes an utterance. Since it is difficult to convert such networks to a

pictorial representation automatically, I use a method that converts them to LISP lists;

such lists are then printed in linear form. Each list is composed of the name of the object

depicted in the list, followed by a description of the relations in which the object takes

part. This method is imperfect, and does not always show exactly and only the portion of

the network that would best illustrate the point being made. Nevertheless, it does give a

fair idea of the structures being built; I try to rectify any deficiencies in this output with

the addition of appropriate comments.

In general, traces only show that portion of PAGAN's processing relevant to the

topic being discussed. In particular, no ambiguity is introduced in the traces in the

chapters that do not themselves address ambiguity. This is done by restricting PAGAN's

knowledge base in those examples to the facts that are necessary for the desired infer

ences to be made. In the chapters that address ambiguity, the full range of knowledge is

made available to PAGAN in the traces. Some traces also terminate before PAGAN's pro

cessing is complete, because the point they are designed to illustrate has been made.

This is done by removing the extraneous trace information after-the-fact. Other than

deletions such as these, and the introduction of comments in italics, the only changes

made to PAGAN's trace output by hand are changes in appearance, such as introduction of

font information and the addition of white space.

Two naming conventions should be noted. First, names that end with a number

represent subconcepts of the concept represented by the root name. For example,

LOCATION-OF8 lies below the LOCATION-OF concept in the knowledge hierarchy.

Secondly, each KODIAK relation has an inverse; a name that ends with an asterisk

represents the inverse of the relation represented by the root name. For example, if

LOCATION-OF8 is a relation that holds from FILE15 to the /tmp-directory concept, then

16

its inverse, called LOCA TION-OF8*, holds from the /tmp-directory concept to FILE15.

1.5.2. A Sample Trace

This trace shows PAGAN's processing of one of the utterances from the faulty dia

logue at the beginning of this chapter:

User: What is a way to delete a file?

As demonstrated in that dialogue, this utterance is ambiguous. The trace shows the

detection of the ambiguity, and its subsequent resolution. Following the trace of

PAGAN's processing of this question is a trace of UC's processing of the question. It

includes not only PAGAN's processing, but also the processing done by the KIP planner

and by the generation mechanism.

User: What is a way to delete a file?

The parser produced the following interpretations:

The semantic interpreter produces two interpretations of this question. The

two are identical, with the exception of the category into which the question it

self is placed. In the first interpretation, the utterance is listed as a

SPECIFICATION-QUESTION. This means that the user is expecting to be told
how to delete a file. This is the correct interpretation, and the one that will

eventually be selected by PAGAN.

Interpretation 1 (TELL-ACTION73):

(HAS-GOAL159 (DOMAIN USER)

(RANGE

(TELL-ACTION73 (DOMINATED BY ASK-SPECIFICATION-QUESTION)

(ACTOR85 =USER) (HEARER62 =UNIX-CONSULTANT) (SPEAKER57 =USER)

(UTTERANCE64 =

(SPECIFICATION-QUESTION16 (DOI\.fiNATED BY SPECIFICATION-QUESTION)

(WHAT-IS51 =

(DELETE-ACTION28 (DOMINATED BY DELETE-ACTION)

(CAUSES-OF -DELETE-ACTION35 =

(DELETION42 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT36 = (FILE41 (DOMINATED BY FILE))))))))))))

In the second interpretation, the utterance is listed as a DESCRIPTION

QUESTION. This means that the user is expecting to be told what it means to

be a way to delete a file. This is the interpretation adopted by the faulty goal
analyzer in the dialogue at the beginning of this chapter; it will be rejected by

PAGAN later in the trace.

Interpretation 2 (TELL-ACTION74):

(HAS-GOAL160 (DOMAIN USER)

(RANGE

(TELL-ACTION74 (DOMINATED BY ASK-DESCRIPTION-QUESTION)

(ACTOR86 =USER) (HEARER63 =UNIX-CONSULTANT) (SPEAKER58 =USER)

(UTTERANCE65 =

(DESCRIPTION-QUESTION9 (DOMINATED BY DESCRIPTION-QUESTION)

(WHAT -IS52 =

(DELETE-ACTION29 (DOMINATED BY DELETE-ACTION)

(CAUSES-OF -DELETE-ACTION36 =

(DELETION43 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT37 = (FILE42 (DOMINATED BY FILE))))))))))))

Since the semantic interpretation of the user's utterance is treated as an expla
nation of that utterance, PAGAN's processing begins with step two of the goal
analysis algorithm: handling ambiguity. Unfortunately, although the interpre
tation being considered here is the incorrect interpretation, the ambiguity can

not be resolved at this point.

Attempting to resolve any ambiguities in TELL-ACTION74

Retrieving potential conflicts with TELL-ACTION74 and its plan.

No conflict found.

PAGAN now determines whether it should continue its analysis of the incorrect
interpretation. As you can see, PAGAN performs steps two and three of the al
gorithm on a single interpretation before moving on to the next interpretation.
The goal that PAGAN is considering at this point (TELL-ACTION74) is found to
be an instrumental goal. This means that it is something that would only be
done in service of some other goal. Therefore, PAGAN decides to continue its
processing of this interpretation.

Determining whether to chain on TELL-ACTION74.

Determining whether TELL-ACTION74 is a complete explanation of

(WHAT IS A WAY TO DELETE A FILE).

Determining whether TELL-ACTION74 is outside of uc's domain of expertise.

TELL-ACTION74 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION74 is an incomplete explanation of

(WHAT IS A WAY TO DELETE A FILE).

Determining whether TELL-ACTION74 is an instrumental goal.

TELL-ACTION74 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on TELL-ACTION74.

Now PAGAN goes back and performs steps two and three of the algorithm on
the other interpretation of the user's utterance. The analysis here is virtually
identical to the previous analysis.

Attempting to resolve any ambiguities in TELL-ACTION73

Retrieving potential conflicts with TELL-ACTION73 and its plan.

No conflict found.

17

18

Determining whether to chain on TELL-ACTION73.

Determining whether TELL-ACTION73 is a complete explanation of

(WHAT IS A WAY TO DELETE A FILE).

Determining whether TELL-ACTION73 is outside of uc's domain of expertise.

TELL-ACTION73 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION73 is an incomplete explanation of

(WHAT IS A WAY TO DELETE A FILE).

Determining whether TELL-ACTION73 is an instrumental goal.

TELL-ACTION73 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on TELL-ACTION73.

PAGAN now recursively analyzes the two interpretations, starting from step

one of the algorithm. First, it looks for an explanation of the correct interpre

tation. Since there is no previous dialogue in this example, there is no oppor

tunity to ground the utterance. So, PAGAN tries to find a planfor explanation.

It finds one; this planfor states that to know something, ask about it and get an

answer to the question. PAGAN infers that the user may have the goal of know

ing how to delete a file. This goal is called KNOWING-THAT30.

Attempting to find an explanation for TELL-ACTION73.

Determining whether TELL-ACTION73 is grounded in the preceding dialogue.

TELL-ACTION73 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION73.

Found PLANFOR4 as an explanation for TELL-ACTION73.

Synopsis:
Goal: know something;
Step 1: ask;
Step 2: be told.

Inferred goal is KNOWING-THAT30.

Explanation found for TELL-ACTION73.

PAGAN must also find an explanation of the incorrect interpretation. Again,

there is no previous dialogue to suppon grounding. PAGAN does find an ap

propriate planfor though; this planfor states that to know the meaning of some

thing, ask what its meaning is, then receive a reply. PAGAN infers that the user

may have the goal of knowing the meaning of 'a way to delete a file.' This

goal is called KNOWING-MEANINGS.

Attempting to find an explanation for TELL-ACTION74.

Determining whether TELL-ACTION74 is grounded in the preceding dialogue.

TELL-ACTION74 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION74.

Found PLANFORS as an explanation for TELL-ACTION74.

Synopsis:
Goal: know the meaning of something;

Step 1: ask;
Step 2: be told.

Inferred goal is KNOWING-MEANINGS.

Explanation found for TELL-ACTION74.

PAGAN now proceeds to step two of the algorithm. It tries to determine wheth

er there is any conflict between the inferred goal KNOWING-MEANINGS and

knowledge of the user maintained by the user model. In this case, there is such

a conflict. For this interpretation to be valid, one would have to assume that

the user did not already know what it meant to be a way to delete a file. How

ever, the user model indicates that this is an unlikely assumption. Therefore,

this interpretation of the user's utterance is rejected.

Attempting to resolve any ambiguities in KNOWING-MEANINGS

Retrieving potential conflicts with KNOWING-MEAJ'I.'INGS and its plan.

Conflict found: inferred goal already obtains.

Rejecting KNOWING-MEAJ'I.'INGS as an explanation of TELL-ACTION74.

Only the correct interpretation remains. PAGAN now determines whether

there is any reason to disbelieve this interpretation. No such reason is evident,

so PAGAN goes on to decide whether processing should continue on the in

terpretation. KNOWING-THAT30 is found to be an instrumental goal, so pro

cessing continues.

Attempting to resolve any ambiguities in KNOWING-THAT30

Retrieving potential conflicts with KNOWING-THAT30 and its plan.

No conflict found.

Determining whether to chain on KNOWING-THAT30.

Determining whether KNOWING-THAT30 is a complete explanation of TELL-ACTION73.

Determining whether KNOWING-THAT30 is outside of uc's domain of expertise.

KNOWING-THAT30 is not outside ofuc's domain of expertise.

The explanation is not necessarily cpmplete.

Determining whether KNOWING-THAT30 is an incomplete explanation of TELL-ACTION73.

Determining whether KNOWING-THAT30 is an instrumental goal.

KNOWING-THAT30 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on KNOWING-THAT30.

19

20

PAGAN now tries to find the reason that the user wants to know how to delete a
file. It finds an appropriate planfor, which states that knowing how to do
something is a step toward actually doing it. Thus, PAGAN infers that the user
may have the goal of actually deleting a file. This goal is represented by
DELETION45.

Attempting to find an explanation for KNOWING-THAT30.

Determining whether KNOWING-THAT30 is grounded in the preceding dialogue.

KNOWING-THAT30 was not grounded in the preceding dialogue.

Trying to find planfor explanations for KNOWING-THAT30.

Found PLANFOR8 as an explanation for KNOWING-THAT30.

Synopsis:
Goal: Achieve X;
Step 1: Know how to X;
Step2: Do X

Inferred goal is DELETION45.

Explanation found for KNOWING-THAT30.

Step two of the algorithm finds no reason to believe that DELETION45 is a poor
interpretation of the user's utterance.

Attempting to resolve any ambiguities in DELETION4S

Retrieving potential conflicts with DELETION45 and its plan.

No conflict found.

Step three of the algorithm is now invoked on DELETION45. This time, the es
timated cost of continuing the analysis exceeds the expected usefulness of con
tinuing the analysis. Therefore, the algorithm halts at this point. PAGAN

makes one last attempt to find a general thematic explanation of why the user
would want to delete a file, but finds none. This terminates PAGAN's process

ing of the utterance.

Determining whether to chain on DELETION4S.

Determining whether DELETION45 is a complete explanation of KNOWING-THAT30.

Determining whether DELETION45 is outside of uc's domain of expertise.

DELETION4S is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether DELETION4S is an incomplete explanation ofKNOWING-THAT30.

Determining whether DELETION4S is an instrumental goal.

DELETION4S is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is no strong expectation for a particular action.

The explanation is not necessarily incomplete.

Determining the level of curiosity about DELETION4S.

Determining the level of interest in DELETION4S.

Interest level = o.
Determining the level to which the goal DELETION4S conflicts with system goals.

Conflict level = o.
Curiosity level = o.
Determining estimated cost of chaining on DELETION45.

Estimated cost = l.
Chaining should not be done on DELETION45.

Determining whether DELETION45 is explained by a theme.

DELETION45 was not explained by a theme.

21

The following trace places PAGAN's processing in context, by showing uc's suc

cessful processing of the question from the previous trace:

User: What is a way to delete a file?

This trace is based on an earlier version of PAGAN than is described in the rest of this

dissertation. This version is written in Franz Lisp rather than Common Lisp. It places a

premium on speed, so as to allow UC to respond to an average question in 6-10 seconds.

Consequently, it does not support the entire range of abilities suggested herein. How

ever, the overall philosophy, as well as many of the implementation details, are shared by

the two versions.

Welcome to UC (Unix Consultant) version 3.23
To a'#' prompt, please type in your questions
about the UNIX file system in English.
To leave, just type 'AD' or '(exit)'.

Hi.
How can I help you?

What is a way to delete a file?

The parser produces the single interpretation of the question that is most likely
to reflect the user's intentions. This speeds goal analysis at the expense of oc
casionally misinterpreting the user's question. The representation of the
user's question is shown as a set of descriptions; however, internally, these
descriptions are interrelated.

The parser produces:
(ASKIO

(listenerlO = UC)
(speakerlO = *USER*)
(asked-forlO =
(QUESTIONlO (what-islO = (KNOW61?

(fact61 = (ACTION14?
(actorl4 = PERSON39?)))

22

(knower61 = UC))))))

(DELETE-ACfiONO?
(del-effectO = (DELETE-EFFECfO?

(DELETE-EFFECf-final-stateO =

(EXISTSO (exist-objectO = FILE3?)

(existenceO =FALSE)))
(DELETE-EFFECf -initial-stateO =

(EXISTS3 (exist-object3 = FILE3?)

(existence3 =TRUE)))
(del-objectO = FILE3?)))

(cause0-0 = (ACfiON14? &)))

PAGAN is called, and handed as its argument the representation of the user's

question. PAGAN determines that the user probably wants to know how to

delete a file (as represented by 'ACTION14?').

The goal analyzer produces:

((HAS-GOAL-gaO
(planner-gaO= *USER*)
(goal-gaO= (KNOW-gaO?

(knower-gaO= *USER*)
(fact-gaO= (ACflON14? &))))))

The KIP planner is now given the task of figuring out how to delete a file.

The planner is passed:
((DELETE-EFFECfO? &))

The planner produces the plan of using the UNIX rm command.

The planner produces:
(PLANFOR250

(goals250 = (DELETE-EFFECfO? &))

(plan250 = (UNIX-RM-COMMANDO
(rm-fileO = FILE3?)
(UNIX-RM-COMMAND-effectO = (DELETE-EFFECfO? &)))))

(HAS-FILE-NAME19 (named-file19 = FILE3?)

(file-name19 =(lisp= nil)))

(RM-HAS-FORMATO
(RM-HAS-FORMAT-commandO = (UNIX-RM-COMMANDO &))

(RM-HAS-FORMAT-formatO = (RM-FORMATO

(rm-file-argO = file-name19)

(RM-FORMAT-stepO = rm))))

(HAS-COMMAND-NAMEOO

(HAS-COMMAND-NAME-named-objOO = (UNIX-RM-COMMANDO &))

(HAS-COMMAND-NAME-nameOO = rm))

uc sends KIP's plan, together with an example of the use of that plan, to the

generator.

The generator is passed:

(TELLS (effectS= (STATE-CHANGEl (final-statel =(KNOW-gaO?&))))

(listener5-0 = *USER*)
(speaker5-0 = UC)
(propositionS = (PLANFOR250 &)))

The generator is passed:
(TELL6

(speaker6-0 = UC)
(listener6-0 = *USER*)
(proposition6 =
(EXAMPLED

(exampleD=
(PLANFOR250-0

(goals250-0 =
(DELETE-EFFECT0-0?

(DELETE-EFFECT-final-state0-0 =
(EXISTS0-0

(exist-object0-0 = FILE3-0?)
(existence0-0 = FALSE-0)))

(del-object0-0 = FILE3-0?)
(DELETE-EFFECT-initial-state0-0 =
(EXISTS3-0

(exist-object3-0 = FILE3-0?)
(existence3-0 = TRUE-0)))))

(plan250-0 =
(TYPE-ACTIO NO

(speaker0-4 = *USER*)
(type-stringO =
(RM-FORMAT0-0

(rrn-file-arg0-0 =
(file-name19-0 = aspectual-of

(HAS-FILE-NAME 19-0
(named-file19-0 = FILE3-0?)
(file-name19-0 = foo))))

(RM-FORMA T -step0-0 = rrn))))))))))

Finally, UC's response is produced.

Use rrn.
For example, to delete the file named foo, type 'rrn foo'.

23

Chapter 2

Previous Research

In this chapter, I give an overview of previous research in goal analysis and related

topics. My aim in this chapter is to present the fundamental work in two topics central to

my research:

1. Plan recognition
2. Dialogue models and user models

Plan recognition is the task of inferring plans and goals from observed actions. Dialogue

models are models of the status of a dialogue between two or more participants. Dia

logue models may contain a record of the utterances used in the dialogue, and of the

objects that are currently at the forefront of the dialogue. User models are models of the

dialogue participants themselves. They may include assessments of overall knowledge

levels, as well as individual facts and beliefs held by the participants.

2.1. Plan Recognition

Plan recognition is the task of inferring, based on observed actions, the plans that

led the agent or agents involved to perform those actions. Goal analysis is simply plan

recognition in which the emphasis is placed on inferring the goals of the agent. Plan

recognition can be divided into two categories:

1. Intended recognition
2. Unintended recognition

Intended recognition is the kind of recognition required in dialogue processing. In

intended recognition, the speaker makes an utterance and intends that the hearer infer the

motivating plans and goals.

24

25

The other kind of plan recognition, which brings with it a different set of concerns,

is unintended recognition. In unintended recognition, an observer attempts to infer the

plans and goals of an agent who is unaware of or unconcerned with the observer. For

example, one of the components of the SINIX Consultant [Kemke 1986, Reeking et al.

1988] is a plan recognizer called REPLIX [Reeking 1987]. REPLIX monitors the com

munication between a user and the SINIX operating system. The purpose of REPUX is to

interpret a sequence of commands to SINIX as one or more plans aimed at achieving par

ticular goals. REPLIX can then suggest an improved plan when an inefficiency in the

user's plan is detected. REPLIX also has the ability to recognize embedded and inter

leaved plans. As long as the user's plans are deemed to be efficient, REPLIX behaves as

if it did not exist Thus, REPUX performs unintended plan recognition.

Unintended recognition is more difficult than intended recognition, because an

agent who intends to have his or her plans and goals recognized will provide clues and

obey conventions that facilitate communication. My work has been concerned primarily

with intended recognition. However, the boundary between intended recognition and

unintended recognition is a fuzzy one, and PAGAN will often attempt to make inferences

that the speaker did not necessarily intend.

One branch of plan recognition that has proven fertile is story understanding. SAM

(Script Applier Mechanism) used the notion of a stereotyped sequence of events, called a

script, to perform story understanding [Schank and Abelson 1977]. A script is simply a

template for a commonly-occurring sequence of events. For example, a script for eating

at a restaurant might include specifications for entering the restaurant, ordering, eating,

and leaving the restaurant. Story understanding is performed by matching described

actions against the action descriptions in the script. Scripts are useful because they allow

rapid interpretation of stereotypical sequences of events, and allow events that are part of

that sequence but that are not observed to be inferred.

One of the major problems with the SAM approach was that it was only useful in

understanding the most mundane sorts of stories. Any story that did not conform to a

highly stereotypical sequence of events could not be handled by SAM, because SAM's

scripts were designed specifically to handle common plans. To address these difficulties,

Wilensky developed the PAM system [1978, 1983]. PAM examined simple stories to

determine the plans and goals of the characters within those stories. Instead of viewing a

scene of the story as a single unit, as in the SAM approach, PAM broke down its explana

tions of the story into units at the action level. An example of a story fragment handled

by PAM is the following:

Willa was hungry.
She picked up the Michelin Guide and got into her car.

PAM could process this story, then use its analysis to answer questions about (among

other things) Willa's motivation for her actions.

26

PAM used an approach to plan and goal recognition called explanation-driven
understanding. The idea was to find an explanation, in terms of plans, goals, and themes,
for every observed or inferred action, plan, or goal. In Wilensky's system, an action was
explained by the plan it instantiated, a plan was explained by the goal the plan was
designed to achieve, and a goal was explained either by the theme that gave rise to it, or
by a plan for which its achievement was instrumental. For example, PAM's processing of
the last sentence in the above story fragment went along the following lines. The action
of picking up the guide is a plan for possessing it, so Willa may have the goal of possess
ing it Possessing an object is a plan for the goal of using it, so Willa may have the goal
of reading the guide. Reading the guide is a plan for knowing the information it contains,
and since the Michelin Guide contains information about restaurants, Willa may have the
goal of knowing the location of a restaurant. Eventually, by reasoning along these lines,
PAM is able to determine that Willa may want to go to the restaurant so as to eat Since
this interpretation meshes with the goal of satisfying hunger predicted during the analysis
of the first sentence of the story, PAM's processing halts. Any competing interpretations,
such as reading for pleasure, are discarded.

The treatment of language as action was first pursued by philosophers of language
[Austin 1962, Searle 1969]. One of the earliest works to apply Searle's approach to
speech acts to the task of computerized language understanding was done by Allen
[1979, Allen and Perrault 1980]. Allen's system was designed to simulate a clerk at a
train station. The user could ask the system simple questions about train arrivals and
departures. Here is an example of a simple exchange whose corresponding representa
tions the system could successfully process:

Patron: When does the train to Windsor leave?
System: The train leaves at 1600.
System: The train leaves from gate 7.

In this example, the patron asks a simple direct question. The system provides the
answer to the patron's question, and also volunteers additional information about the
departure gate. It selects this additional information by analyzing potential obstacles to
the patron's inferred plan, and acting to overcome those obstacles.

Allen's system was designed to view language as goal-directed action. Thus,
~peech acts were represented as plans. For example, the following plan was used to han
dle a request, either direct or indirect:

REQUEST(speaker ,hearer,action)
body:

MB(hearer, speaker, speaker WANT hearer DO action)
effect:

hearer WANT hearer DO action

This plan says that a request is done by making it mutually believed that the speaker
wants the hearer to do some action. The effect of the request is that the hearer wants to
do the action.

27

Allen developed a set of inference rules for building explanations. The most
important of these rules are:

1. The Precondition-Action Rule
2. The Body-Action Rule
3. The Action-Effect Rule

The Precondition-Action Rule states that if a speaker wants to achieve a particular goal,
the speaker may want to achieve some other goal enabled by it The Body-Action Rule
states that if a speaker wants to execute some action, the speaker may want to execute
some other action of which the first action forms one part. The Action-Effect Rule states
that if a speaker wants to execute some action, the speaker wants the effects of that action
to hold. Any plan recognition algorithm must take these three types of inference into
account In Chapter 4, I show how the knowledge needed to make these three types of
inference can be combined into a single representation.

There are a number of problems with Allen's formulation of the plan recognition
process. Some of these problems are addressed individually in later chapters. However,
the basic approach is compelling, and forms the basis for much of the subsequent work in
plan understanding.

Allen and many other researchers have been concerned not only with inferring the
goals that underlie the production of an utterance, but also with the satisfaction of those
goals. I am concerned only with the former. Satisfaction of the user's goals in uc is per
formed by the UCEgo agency mechanism [Chin 1988] and by the KIP planner [Luria
1988].

Wilensky [1983] introduced the notion of a metaplan for use by a planning agent.
A metaplan is a plan that manipulates another plan. Metaplans are useful in goal analysis
because speakers' utterances are often aimed at clarifying or otherwise using plans. This
is especially true in systems that operate in instructional or information-seeking domains.
If utterances are viewed as components of plans, then utterances about plans are effec
tively components of metaplans.

Litman [1985] used this notion of a metaplan to expand Allen's approach to dia
logue processing. Her system integrates plan recognition with discourse analysis. As in
Allen's system, Litman's system could interpret an utterance as the continuation of an
existing plan. However, Litman's system also allowed an utterance to introduce a meta
plan to an existing plan. For example, Litman's system could engage in the following
dialogue (taken from Litman and Allen [1984]):

Passenger: The eight-fifty to Montreal?
Clerk: Eight-fifty to Montreal. Gate seven.

In the analysis of the passenger's question, Litman's system creates a stack of plans. The
bottom plan in the stack is the BOARD plan, which involves boarding the train to Mont
real. Above this plan on the stack is a meta-plan for finding out one of the parameters of

28

the BOARD plan, namely the location of the boarding. The use of metaplans allows this
system to handle a wider range of dialogues than could Allen's system, while producing
structures that more accurately reflect the relationships among the inferred plans.

Actually, the use of the term 'metaplan' for a plan that relates to another concept in
this way is somewhat misleading. This term was adopted because much of the recent
research in dialogue processing has been done in planning-oriented domainso Thus, this
sort of plan typically has another plan as the object it manipulates, and is therefore prop
erly called a metaplan. However, the system should work regardless of whether the item
on the stack to which the utterance is attached is a plan. Consider for example the fol
lowing dialogue fragment:

User: What's a file descriptor?
uc: It's a magic cookie for input/output.
User: What's a magic cookie?

It is a stretch to call the content of UC's utterance being questioned by the user (that is,
the term 'magic cookie') a 'plan' or a 'plan parameter,' even though UC's utterance as a
whole is certainly part of a plan. Therefore, the term 'metaplan' is inappropriate in this
example.

Carberry [1983, 1986a] built a system called TRACK, which interprets utterances
based on questions a user may have about a plan she is trying to construct. As with UC,
TRACK's primary area of application is information-seeking dialogues -- dialogues in
which one agent is trying to obtain information from another agent. Given a stated goal,
TRACK attempts to infer other goals held by the speaker through the use of a set of
heuristics. For example, if the speaker asks ''What are the prerequisites of History
304?," then the speaker may have the goal of taking the history class. Given a particular
goal, TRACK goes on to choose possible domain plans that the speaker may have in
mind. Again there are a set of heuristics for locating such a plan (i.e. for indexing such a
plan in memory). For example, if the goal is a true predicate which is a precondition to
or step in a plan, then that plan may be the domain plan with which the user is currently
concerned. Using these techniques, TRACK builds a tree structure representing the
domain-level plan the speaker is pursuing. It then uses a set of rules of conversation to fit
new utterances into this tree structure. TRACK is particularly useful in solving this latter
problem. For example, TRACK handles inter-sentential ellipsis particularly nicely. My
work contrasts with TRACK in that I adopt a uniform approach to inferring both linguistic
goals and domain goals.

An important area of plan recognition that my work does not address is the detec
tion of speaker misconceptions. The treatment of speaker misconceptions is the subject
of much current research. Pollack [1984] identifies the appropriate query assumption as
the assumption that a speaker always understands what advice is needed, and asks for
that advice correctly and directly. Pollack then explores plan recognition when the
appropriate query assumption is not made. I make the appropriate query assumption;
however, the degree to which this assumption restricts the dialogue is lessened in PAGAN
by using the user model to mediate selection of the correct interpretation of an utterance,

29

and by the development of a network of explanatory goals for an utterance instead of just
a single such goal.

Quilici et al. [1985] were concerned with another type of failure -- incorrect user
domain plans. Quilici identified nine problem classes that might cause a plan to be
incorrect, and associated with each a set of heuristics for giving advice about a problem
in that class. See Luria [1988] for a description of how UC's planner handles some of

these issues.

The plan recognition techniques described above are primarily backward chaining
techniques. It is also possible to use forward chaining for plan recognition. For example,
the BELIEVER system [Schmidt et al., 1978] relied heavily on a predictive component for
understanding simple action descriptions. The advantage of using forward chaining for
plan understanding is that, when successful, this approach greatly reduces the amount of
work required to recognize a plan once a step of that plan has been observed. The disad
vantage of forward chaining is that when it is unsuccessful, the system must backtrack
before recognition can be completed. BELIEVER devoted much of its energies to
hypothesis revision, in order to correctly handle situations in which the observed action
had not been predicted. Because of this drawback of the forward chaining paradigm,
PAGAN uses backward chaining almost exclusively.

One type of forward-chaining inference that PAGAN does use is based on work by
Norvig [1987]. Norvig examined the low-level inferences that a reader easily makes in
reading a story. For example, on reading 'In a poor fishing village built on an island not
far from the coast of China,' a reader will typically infer that the villagers fish in the sea,
and that this same sea surrounds the island, and forms the coast of China. Norvig's
approach is to use marker passing to suggest low-level inferences. One such type of
inference used by PAGAN, called a concretion inference, is discussed in Chapter 5.

2.2. Dialogue Models and User Models

Two extremely important components of a plan recognition system are the dia
logue model and the user model. There is some disagreement in the literature as to the
relative scope of these two models. Kobsa and Wahlster [1987] provide a good summary
of the various viewpoints. I take the position in this dissertation that the dialogue model
and the user model are separate entities. In my formulation, the dialogue model contains
a representation of the structure of the dialogue and of the plans and goals that motivate
the dialogue, as well as a description of the objects that are currently in focus. The user
model on the other hand contains a description of the user's knowledge and beliefs
independent of the dialogue (although the user model may well be modified as the dia
logue progresses). See Wahlster and Kobsa [1986] for an overview of the approaches to
these models that have been explored in the literature.

30

The purpose of a dialogue model is to keep track of the progress of a dialogue. A

dialogue model includes a record of the utterances used, and of the plans and goals that

have been inferred to explain those utterances. Most of the plan recognition systems for

dialogue processing described above contain such a dialogue model either explicitly or

implicitly.

Grosz added the notion of focus or attentional state to the dialogue model [1977,

1978, Grosz and Sidner 1985]. It is used to track the objects and concepts that are most

salient at any particular point in a dialogue. Maintenance of an attentional state allows a

system to make certain inferences, such as the resolution of pronominal references or of

definite noun phrases, that cannot be handled properly by traditional means. Consider for

example the following exchange (from Grosz [1977]):

Person 1: The lid is attached to the container with four 1/4-inch bolts.
Person 2: Where are the bolts?

The definite noun phrase 'the bolts' in the second utterance clearly refers to the bolts

mentioned by person 1. The use of a focus mechanism allows this relationship to be

inferred easily during the analysis of the second utterance. I have largely ignored the

attentional component of the dialogue model in my research; however, it would be a use

ful addition to PAGAN.

Carberry [1986b] addresses the general problem of system recovery when a

discrepancy arises between the system's dialogue model and the user's dialogue model.

She suggests a four-stage approach. First, the discrepancy must be detected. Once it has

been detected, the system forms a hypothesis as to the cause of the disparity. Based on

this hypothesis, the system interacts with the user in order to determine the actual cause

of the disparity. Finally, the system must revise its dialogue model in light of what it has

learned through this process.

The other type of model that is of great importance to a plan recognition system is

a user model. The purpose of a user model is to keep track of the knowledge and beliefs

held by the user. Schuster and Finin [1983] stressed the need for a user model in formu

lating good responses to questions. User models are also important in understanding the

questions themselves. Chin's KNOME system [1988] and Nessen's SC-UM system [1987]

provide good examples of a typical approach to user modeling. In this approach, a set of

stereotypes is used to represent typical users. The model of an individual user is com

posed of that user's stereotype, together with individual facts about that user added on

top of the stereotype. For example, KNOME and SC-UM each utilize four user stereo

types: Novice, Beginner, Intermediate, and Expert.

uc's user model is called KNOME [Chin 1988]. In addition to using stereotypical

user classes, KNOME also stereotypes UNIX commands into the categories Simple, Mun

dane, Complex, and Esoteric. By combining these ~o types of stereotype, KNOME is

able to make a wide range of inferences about the knowledge state of a user based on

relatively little information.

Chapter 3

A Theory of Explanation

In its broadest interpretation, an explanation of an event is a set of conditions that
allow or cause the event to occur. There are a huge number of such explanatory condi
tions for any given event. To be useful, an explanation must contain only a subset of
these conditions. Some of the more important types of conditions are:

1. States of the world
2. Causal relationships
3. Beliefs, intentions, and affect of agents
4. Other events, including actions
5. Physical laws

The types of conditions selected to be part of an explanation dictate the character of the
explanation. For example, the following are all potential explanations for the breaking of
a particular window:

1. A brick broke it
2. Melissa threw a brick at it
3. Melissa was angry
4. It was made of glass

At first, this final explanation seems to be less an explanation of the event than an ena
bling condition of it. However, it seems to be a perfectly good explanation of the event
relative to the question 'How could it have broken?' Other types of explanations include
scientific explanations, political explanations, affective explanations, etc. Schank [1986]
even suggests explanations composed of questions.

These examples demonstrate that there are many different types of explanations for
a single event that might be useful for a particular task. This chapter details what it
means for an explanation of an utterance to be a good one. I formalize the concept of
'goodness' by suggesting three criteria by which the quality of an explanation of an utter
ance may be judged. While these criteria are intended to apply to explanations of

32

utterances, they are also useful for a broad range of explanation-based tasks.

There are three reasons that it is useful to study criteria for evaluating explanations.

First, they can be of help in the design of a knowledge base, because they indicate what

types of representations will lead to the desired explanations. Secondly, they assist in the

design of a goal analysis algorithm by placing constraints on the output of such an algo

rithm. Finally, such criteria provide a means to evaluate the output of a goal analyzer,

once it has been implemented.

3.1. Criteria For Evaluating Explanations

A good explanation of an utterance meets the following criteria:

1. Applicability
2. Grounding
3. Completeness

The applicability criterion states that a good explanation of an utterance is applicable to

the needs of the system that will use that explanation. The grounding criterion states that

a good explanation of an utterance is grounded in what is already known of the speaker

and of the dialogue. The completeness criterion states that a good explanation of an

utterance covers every aspect of the utterance in depth; it leaves no portion of the utter

ance unexplained. These criteria are valid independent of the algorithm used to construct

the explanation. That is, they are criteria that one applies to an explanation to see how

good it is, not to an algorithm to see how well the algorithm creates explanations. In the

following sections, I describe each of these criteria in more detail.

3.2. The Principle Of Applicability

The principle of applicability states that a good explanation of an utterance is

applicable to the needs of the system that will use it. That is, no matter how good an

explanation might be in other respects, if it doesn't give the system that will use it what

that system needs to do its job, then it is not a good explanation.

An assumption that underlies the principle of applicability is that a system that is

trying to explain an utterance has interests of its own, which understanding the utterance

may help to further. Thus, this principle implies that the operation of a goal analyzer

cannot be independent of the system in which it is embedded, and therefore the concept

of a domain-independent goal analyzer is impractical. Of course, it may be possible to

isolate the portions of a goal analyzer that rely on the particular task to be performed, and

represent those portions declaratively. The remaining inference engine would be

domain-independent, but the goal analyzer as a whole would not.

33

The reader may have noticed that I have not included accuracy among the criteria
for evaluating explanations. There are two reasons for this. First, accuracy is in general
subsumed by applicability. That is, in most cases an explanation of an utterance that
does not accurately reflect the speaker's intentions will not be applicable to the needs of
the system. Secondly, in some cases, inaccurate explanations are perfectly acceptable. A
system designed to simulate a paranoid schizophrenic for example might prefer a delu
sional interpretation of an utterance to an accurate one.

There are three dimensions of an explanation along which applicability may be
assessed:

1. Composition
2. Content
3. Granularity

Applicability of composition concerns the type of element out of which explanations
should be constructed. Applicability of content deals with the particular choice of ele
ments that compose an explanation. Finally, applicability of granularity covers the level
of generality of the elements of a particular explanation. These dimensions are discussed
in the following sections.

3.2.1. Applicability of Composition

The principle of applicability of composition holds that the type of the elements
that compose an explanation must be applicable to the needs of the system. The compo
sition of a good explanation is largely a reflection of how that explanation will be put to
use; different tasks require different types of explanations. For example, a system whose
task is to build a model of a user's knowledge will need to build explanations that are
composed of facts about the user that allowed the user to produce an utterance. In such a
system, an explanation of:

User: Can you tell me how to delete a file?

might be composed of facts such as:

1. The user does not know how to delete a file.
2. The user believes that the system knows how to delete a file.
3. The user believes that the system will cooperate with the plan.
4. The user knows what a file is, and what it means to delete one.
5. The user understands the task of the system.
6. The user understands English.

For a consulting system such as uc, .the knowledge that is applicable to the
system's task is knowledge of the plans and goals of the user. This is because the pur
pose of such a system is to address the user's goals. Thus, an explanation of this question
for UC 's purposes might be composed of facts such as:

34

1. The user wants to know how to delete a file.
2. The user expects to be told how to delete a file.
3. The user wants to delete a file.
4. The user wants to free up disk space.

Notice that these facts include both goals that the speaker holds and actions that the

speaker expects the hearer to carry out. Because the understanding of a speaker's plans

and goals is crucial to so many domains that might benefit from a natural-language inter

face, my research focuses almost exclusively on making inferences about plans and

goals. Occasionally I will mention other types of inferences, usually to place plan and

goal analysis in a broader perspective.

3.2.2. Applicability of Content

The principle of applicability of content holds that each of the components of a

particular explanation should be applicable to the needs of the system. A typical utter

ance is rarely aimed at achieving a single isolated goal, but rather sits at the tip of a

whole chain of motivating goals. Not all such goals will be applicable to a given system

though. A good explanation of an utterance will not include all of these goals, but will

include only those that are applicable to the purposes of the system. For example, the

novice who asks:

User: How can I print a file on the laser printer?

may have asked the question so as to find out how to get a printout, so as to obtain a prin

tout of the file, so as to check its contents for accuracy, so as to turn in an accurate report,

so as to get a good grade, so as to graduate with a high grade point average, so as to get a

good job, and so on. Only a portion of this chain of motivating goals is likely to be appli

cable to the purposes of a particular system, and a good explanation will include only that

portion. UC's contract with its users for example is to provide information on the use of

the UNIX operating system. Thus, in the uc context, a good explanation will not include

goals that go beyond the use of UNIX. In this example, the last few goals in the list of

motivating goals are beyond UC's purview, and therefore should not be a part of an

explanation designed for use by UC.

At the other end of the spectrum, a good explanation of an utterance must include

at least one goal that is within the system's domain of expertise. Thus, if an explanation

of the utterance:

User: I have a problem with Is.

includes only the goal of informing the hearer of the problem or the goal of the hearer

knowing about the problem, that explanation is an inadequate one for the uc domain. An

adequate explanation of this statement for UC's purposes would indicate that the user is

attempting to solicit help from UC, since this is a goal that is applicable to UC's task. In

35

practice, adherence to the principle of completeness (described below) ensures that an

explanation will have at least this desired depth.

3.2.3. Applicability of Granularity

The third dimension along which applicability can be assessed is the granularity of

the explanation. The principle of applicability of granularity holds that a good explana

tion contains the right amount of detail. It is often possible to break down a single action

into a number of subactions. The extent to which an explanation is broken down in this

way is its level of granularity. Different levels of granularity may be more or less appli

cable to a given system. For example, suppose a user tells uc:

User: I want to add public read permission to my file called jackstraw.

An explanation of this statement that indicates that speaker probably wants to use a

UNIX command has a reasonable level of granularity for UC. On the other hand, an

explanation that states that the speaker probably wants to type each letter of the name of

a UNIX command and each letter of the file name is not a reasonable one for uc's pur

poses. While it is quite likely to be correct, this explanation is nevertheless too fine

grained to be of use.

Of course, if UC is concerned that the user may not know how to spell the com

mand name, then the latter explanation above may be quite applicable. This points out

that the type of explanation that is applicable can change as the short-term goals of the

system change. Thus, such goals must always be taken into account when judging the

merits of an explanation.

3.3. The Principle of Grounding

The second criterion for evaluating an explanation is the principle of grounding.
This principle states that a good explanation of an utterance relates what is inferred from

that utterance to what is already known about the speaker and the dialogue. Typically,

before hearing an utterance, a system will already have some knowledge that is applica

ble to the processing of that utterance. This knowledge is of two types:

1. Knowledge of the dialogue
2. Knowledge of the speaker

First, the system may have already exchanged some dialogue with the speaker.

Secondly, the system may have some stored knowledge about the user, or be able to

make informed guesses about what the speaker knows or believes.

36

It follows from the existence of these two kinds of knowledge that there are two

ways that an explanation can be grounded in existing knowledge:

1. By relating it to knowledge of the dialogue
2. By relating it to knowledge of the speaker

The first way that an explanation can be grounded in existing knowledge is by relating it

to knowledge of the dialogue. For example, it is difficult to imagine a good explanation

for the utterance:

User: It's called crazy-fingers.

that does not relate the utterance to some preceding dialogue. The main reason for this is

that the subject of the sentence is a pronoun with no clear referent. Consider now the

exchange:

uc: What's the name ofthe file?
User: It's called crazy-fingers.

In this example, UC's question provides a background against which the user's statement

can be understood. A good explanation of the user's utterance must relate the utterance

to this previous dialogue.

A second way that an explanation can be grounded in existing knowledge is by
lending credence to, or by casting doubt on, something that the system already believes

of the user. In this example, the user's response in the exchange:

uc: What's the name of the file?
User: It's called crazy-fingers.

might lend credence to UC's belief that the user knows the 'ls' command (which lists file

names in UNIX), thereby grounding the statement in knowledge that uc previously held

about the speaker (in addition to grounding it in UC's knowledge of the dialogue). This
kind of grounding lies in the domain of user modeling, and I will discuss it only briefly in

Chapter 7.

An assumption that motivates the principle of grounding is that the utterance to be

explained is part of a dialogue. The significance of this assumption is that systems that

don't engage in dialogue, such as simple question-answering systems, can largely ignore

the principle of grounding. However, such systems are limited in their usefulness as

natural language systems; dialogue is an important part of language.

There are two important aspects of an explanation that is grounded in knowledge

of preceding dialogue:

:"

37

1. The type of concept to which the explanation is attached
2. The type of attachment

First, it is useful to categorize the type of knowledge to which the utterance is connected.

There are many such concepts; I am concerned only with plans and goals. An explana

tion may attach to either of these components of the dialogue model, or possibly to both

of them. Secondly, the type of attachment to a concept is important, and can be categor

ized. The following sections are divided according to the type of knowledge to which an

explanation is connected. Within each section, I discuss the ways that an explanation can

be attached to a concept of that type.

3.3.1. How an Explanation Attaches to a Plan

There are three ways that an utterance can connect to a plan that a speaker is

already pursuing:

1. Plan continuation
2. Plan delay
3. Plan rejection

These types of grounding reflect the status of an existing plan relative to the event to be

explained. Whenever there is such an active plan, each new utterance to be explained

will relate to that plan in one of these three ways. As there is usually one or more active

plans at any point in a dialogue, this aspect of grounding is widespread. The following

sections describe each of these types of grounding in detail.

3.3.1.1. Plan Continuation

A good explanation of an event includes every plan in which the event is a step. If

such a plan is part of the system's previous knowledge, then the explanation is thereby

grounded in previous knowledge. For example, consider the exchange:

uc: Is the file in your directory?
User: Yes.

UC has initiated the plan of first asking a question then receiving a response, so as to

achieve the goal of knowing whether the file under discussion is in the user's directory.

This plan constitutes a stereotypical sequence of events for which the second step, a

yes/no response by the user, has not yet been seen. Therefore, UC's question has set up a

specific expectation about how the user will proceed, namely that she will provide a

yes/no answer. A good explanation of the user's utterance in this example will include

UC's plan, because the uttering of an affirmative response is a continuation of that plan.

38

It is important to note that this type of grounding is applicable to any goal that has

been inferred to help explain an utterance, not just the lowest-level one. For instance, if

the user had instead responded to the above question:

uc: Is the file in your directory?
User: Is the Pope Catholic?

the expectation of a yes/no response could not be used directly to ground the explanation

that the speaker wants to ask a rhetorical question about the Pope's religion. However,

asking such a question is a plan for the goal of conveying an affirmative response. This

goal can be grounded in the expectation of a yes/no response by plan continuation. The

explanation that the speaker wants to ask an rhetorical question is therefore indirectly

grounded in the expectation. Thus, a good explanation of the user's utterance in this

example would indicate that the question was asked as a plan for the goal of conveying

an affirmative answer, and that conveying an affirmative answer was done as a plan for

the adopted goal of uc knowing the answer to its question.

In dialogue, plan continuation may be signaled by a participant before it occurs:

uc: What is the name of the file?
User: Hold on, let me check.

Here, the user has initiated a plan of informing UC about an upcoming plan continuation.

The remaining steps of the user's plan are to obtain the requested information, then to

inform uc. This plan as a whole constitutes a continuation ofUC's plan.

3.3.1.2. Plan Delay

When one participant in a dialogue (or in fact in any cooperative venture) initiates

a plan that requires the participation of other agents, it does not follow that the other par

ticipants will readily accept the plan and agree to continue it. They may instead decide

that for some reason they should take another direction. There are two general categories

into which phenomena of this type may be placed: plan delay, and plan rejection. Plan

delay, an interruption in the execution of a plan, is the subject of this section. Plan rejec

tion, a termination of the execution of a plan by one of its participants, is discussed in the

next section.

Plan delay occurs when a plan participant wishes to delay the execution of the plan

until some later time. There are three types of plan delay:

1. Clarification delay
2. Skepticism delay
3. Extra-schematic delay

39

A clarification delay is a delay designed to fill a gap in an agent's knowledge of the plan

or goal. A skepticism delay is one in which the agent fully understands the plan or goal,

but questions its validity. Finally, an extra-schematic delay is one that arises due to cir

cumstances outside of the plan being delayed. These three types of plan delay are the

subject of the following sections.

3.3.1.2.1. Clarification Delay

Clarification delay is delay designed to fill a gap in a participant's knowledge of

the plan:

uc: What is the name of the file?
User: Do you mean the file I want to copy?

In this example, the user is not sure about what question is being asked. Rather than

selecting a particular interpretation of the question and answering it, thereby continuing

the plan, the user decides to get clarification about the meaning of the question from uc.

This delays uc's plan until the clarification is made.

Clarification delay is terminated (that is, the original plan continues) when the sub

plan is completed via plan continuation (see above), or when it is discarded via plan

rejection (see below). In this example, once UC indicates the intended meaning of the

question, the user can continue uc's original plan.

3.3.1.2.2. Skepticism Delay

Skepticism delay arises when a plan participant fully understands the plan being

delayed, but is skeptical about its efficacy or efficiency:

UC: What is the name of the file?
User: I may not have it.

Here, the user is questioning whether UC's plan will work at all. The user can also sug

gest that there might be a more efficient plan:

uc: What is the name of the file?
User: Can't you look for it?

In this example, the user is delaying UC's plan by questioning whether it wouldn't be

more efficient for UC to search out the information itself.

40

Skepticism delay is completed, and the delayed plan is continued, when the skepti
cism is allayed. Since it is possible that the skepticism might not be allayed, the system
must have the ability to infer that plan delay has been converted to plan rejection. Plan
rejection is discussed below.

3.3.1.2.3. Extra-Schematic Delay

The third kind of plan delay is extra-schematic delay. Extra-schematic delay is
plan delay that arises due to concerns outside of the plan being delayed:

UC: What is the name of the file?
User: That reminds me of the one about the file and the Stanford student. ..

In this example the plan delay is triggered by a component of UC's plan, but the plan
introduced by the user does not itself bear on uc's plan.

3.3.1.3. Plan Rejection

The other way that an utterance may fail to continue an existing plan is by reject
ing the plan as flawed in some way. As with skepticism delay, plan rejection may stem
either from efficacy or efficiency considerations. A plan participant may reject a plan for
reasons of efficacy either because the plan cannot be carried out, or because one of the
effects of the plan is undesired. For example, a participant may be unable to answer a
question:

uc: What is the name of the file?
User: I don't know.

Here, uc has asked the user for the name of some file under discussion. uc now expects
the user to tell it the name. Since the user doesn't know what the name is, she rejects the
plan by indicating her inability to provide the answer.

A plan participant may reject a plan for reasons of efficiency either because there is
a better way to achieve the desired outcome, or because the execution of the selected
plan would be too expensive in an absolute sense. For example, the participant may indi
cate that another agent would be better able to perform a portion of the plan:

uc: What is the name of the file?
User: You should ask Marcia.

Here, a new plan is suggested by the user, thereby rejecting UC's initial plan.

41

3.3.1.4. The Relationship between Plan Delay and Plan Rejection

Although it is useful to treat plan delay and plan rejection as completely separate
phenomena, they are in fact closely related. This is because there is never a guarantee
that a delayed plan will be resumed. Thus, when the system detects plan delay, it must
have the ability to treat it as plan rejection. Furthermore, plan rejection will never be
absolute, because the speaker always has the option of taking it up again. Thus the dis
tinction between plan delay and plan rejection is one of degree.

3.3.2. Connecting an Explanation to a Goal

There are three ways that an event may attach to a goal. These ways parallel the
ways that an event can attach to a plan:

1. Goal achievement
2. Goal scrutiny
3. Goal rejection

These three types of attachment to a goal are described in the following sections.

3.3.2.1. Goal Achievement

An action can achieve a goal, either by continuing an existing plan, or by introduc
ing a new plan for an existing goal [cf. Wilensky 1983]. The former case occurs when
an action is grounded by plan continuation. The latter case occurs when an action does
not conform to a specific expectation, and instead addresses a higher-level goal (that is, a
goal that motivated the plan containing the expected action). Suppose that instead of
responding ''yes,'' as in an earlier example, the user engages in the following dialogue:

uc: Is the file in your directory?
User: It's in /tmp.

Many accounts of yes/no questions have tried to view responses such as this one as an
answer to the yes/no question asked. Such approaches require a refinement of the notion
of what it means to be a yes/no question. For example, Hirschberg [1984] represents
yes/no questions as scalar queries rather than as questions that take simple yes/no
answers.

In contrast to such positions, I believe it is important to view yes/no questions
themselves as questions that can only take yes/no answers or answers that can be inferred
to indicate yes/no answers independent of the context of the question (as in the response
'Is the Pope Catholic?'). The real complexity inherent in yes/no questions arises because
yes/no questions are typically used in service of higher-level goals. A response to a
yes/no question can address such a higher-level goal, but an answer to a yes/no question

42

can only be yes or no.

The above example is a case in point. There is no way to construe this response as
either an affirmative answer or a negative answer to the question. 1 Thus, the lowest-level
expectation is not met. However, the goal UC was addressing in asking the question was
to know the location of the file. This goal is itself an expectation, because it is a step of a
higher-level plan that has not yet been completed. By informing uc of the file's location,
the response succeeds in addressing this goal, independent of uc's original plan of
receiving a yes/no response to its question; the utterance therefore matches the expecta
tion that the user will address the goal. Thus, an utterance such as this one is grounded
both by goal achievement, and by plan rejection.

In general, it is not acceptable simply to respond negatively to a question such as
this one:

uc: Is the file in your directory?
User: No.

This is because such a question is usually in service of the goal of knowing the location
of the file, and whereas an affirmative response satisfies this higher-level goal, a negative
response does not However, there are cases where a negative response is perfectly
appropriate. For example, there are some UNIX utilities that require that certain files are
located in the user's directory. If the user were inquiring as to why such a utility wasn't
working, then the above exchange is perfectly reasonable. The point here is that it is not
a goal analyzer's responsibility to determine whether a response such as this one is mal
formed. Rather, this task should fall to a separate component that detects user miscon
ceptions. See Pollack [1984], Chin [1988], and Quilici [to appear] for examples of such
systems.

3.3.2.2. Goal Scrutiny

The second way that an event can be grounded in a goal is by questioning that goal
in some way. Consider for example the exchange:

UC: What is the name of the file?
User: Why do you want to know?

Here, the user is skeptical of UC's need for the information it is requesting, and so ques
tions whether UC's goal is a legitimate one. Notice that in addition to questioning UC's
goal, this response also delays UC's plan.

1 This response implies a negative answer, but only by virtue of the analysis described here.

43

3.3.2.3. Goal Rejection

The third way that an event can be grounded in a goal is by rejecting that goal.

This may occur either because the goal should not be achieved, or because it cannot be

achieved. For example, in the following exchange the user indicates that there is a rea

son that UC's goal should not be fulfilled:

uc: What is the name of the file?
User: I promised Sharon I wouldn't let anyone find out

Thus, uc's plan is rejected.

The other reason that a participant may reject a goal is if the participant believes

that the goal cannot be achieved. For example, the goal may not be achievable if some

premise of the goal is incorrect. Consider the exchange:

uc: What is the name of the file?
User: I haven't typed the data into a file yet.

Here, uc has been led to believe that the data are contained in a UNIX file. This premise

is incorrect, and consequently it is impossible for the user to answer the question.

Instead, the user indicates the reason that the question is flawed. The extreme case of this

phenomenon is when the user's overall goal has been incorrectly analyzed:

uc: What's the name of the file you want to delete?
User: I don't want to delete anything.

Here, uc has incorrectly inferred that the user desires to delete a file, and has initiated a

plan to determine which file is to be deleted. Since the user never intended that a file be

deleted, she rejects UC's plan.

3.4. The Principle of Completeness

The principle of completeness states that a good explanation of an utterance covers

every aspect of the utterance; it leaves no portion of the utterance, or of the explanation

itself, unexplained. There are two kinds of completeness:

1. Depth Completeness
2. Breadth Completeness

Depth completeness (also called vertical completeness) is completeness of a single line

of explanation of an utterance. An explanation of an utterance exhibiting depth com

pleteness includes a goal that motivated the production of the utterance, and a goal or

theme to explain each inferred goal. Breadth completeness (also called horizontaL com

pleteness) is coverage of all aspects of the utterance. An explanation that exhibits

44

breadth completeness includes every goal that motivated the production of the utterance.
The following sections describe these two kinds of completeness.

3.4.1. Depth Completeness

When an explanation is inferred for an utterance, that explanation itself may be
subject to explanation. For example, the goal of requesting that UC tell the user how to
compress a file might explain the utterance:

User: Can you tell me how to compress a file?

That goal itself can be explained by the user's goal of knowing how to compress a file,
which might in turn be explained by the user's goal of compressing a file, etc. The depth
completeness criterion states that a good explanation includes an explanation of every
goal inferred in this way.

Of course, if the only type of explanation for a goal were another goal, strict adher
ence to the vertical completeness criterion would require infinite explanations. There are
two ways around this apparent quandary. First, a non-intentional explanation can be used
to explain a goal, thereby terminating the chain of explanation. Secondly, the principle
of applicability can be called into play. The principle of completeness is often at odds
with the principle of applicability. Where the applicability criterion dictates that a partic
ular portion of an explanation should be omitted, the completeness criterion dictates that
it should remain a part of the explanation. In such cases, the applicability criterion takes
precedence; there is little sense in having a complete explanation of an utterance if it
isn't applicable to the task at hand. The modified depth completeness criterion is then
that a good explanation includes an explanation of every inferred goal in the domain of

discourse.

3.4.2. Breadth Completeness

The breadth completeness criterion requires that a good explanation of an utterance
or of an inferred goal include every motivating goal of that utterance or inferred goal. It
is derivative of Wilensky's notion of exhaustion [1983]. The breadth completeness cri
terion is based on a general principle of planning, namely that it is often possible to
address more than one goal with a single utterance. For example, a person can both ask
what vi does, and indicate a suspicion that it is an editor, with a question like:

User: Is vi an editor?

The most obvious way to address two goals with a single utterance is by explicitly
listing two requests, as in:

45

User: I want to know how to rename a file and how to copy a file.

One might claim that such a statement is no more than a weak cohabitation of two

separate statements within the same sentence. However, until a principled way is avail

able to determine how a given input should be chunked before it is processed, sentences

will remain the natural delimiter. Thus, an utterance such as this one must be handled as

a single request, since it uses a single sentence. A complete explanation of this statement

must then include both the goal of knowing how to rename a file, and the goal of know

ing how to copy a file.

The incorporation of multiple goals into a single utterance need not be so straight

forward. For example, a single utterance may be used both to request something of the

hearer, and to inform the hearer of a particular fact. The question:

User: How do I delete the file 'hinkle' in my top-level directory?

both requests that the hearer say how to delete the file, and informs the hearer of the

whereabouts of the file. A good explanation of this question must include both of these

as goals of the speaker.

It is possible to use a single utterance to address virtually any pair of goals that can

themselves be addressed linguistically. Thus a taxonomy of pairs of goals that might be

addressed by a single utterance is no easier to come by than a taxonomy of goals them

selves. Consequently, I will not expound on such a taxonomy beyond providing a

number of examples. The interested reader is referred to Appelt's work [1985] for a

description of this problem from a generation perspective.

To see the importance of recognizing multiple goals, consider this example:

User: I want to delete a directory and all the files in it.

The user here has expressed two goals explicitly in a single utterance. To successfully

respond to this utterance, the system must recognize both goals. If the system recognizes

only the goal of deleting the directory, it may come up with the plan of moving its files

elsewhere and then deleting it; if it recognizes only the goal of deleting the files, the plan

it chooses will alJ;Uost certainly leave the directory intact. Thus, it is important for

PAGAN to infer all the goals that motivate the production of an utterance.

Consider another example:

User: How can I prevent anyone from reading my file without deleting it?

The user has two goals in making this utterance: to prevent other people from reading the

file, and to preserve the file. Once again, the goals are distinct and non-conflicting, and

both must be addressed to adequately respond ·to the question. The first goal is the user's

main goal; the second is called an adjunct goal [Wilensky 1983]. However, the method

for inferring these goals, given a representation of the utterance, is less straightforward

46

than in the previous example, since they are not mentioned as a statement of goals but

rather as a question.

Addressing multiple goals with a single action is not limited to goals in the domain

of discourse. Discourse goals themselves may be pursued in this manner:

User: My last question is how to save my file once I've edited it.

The speaker of this utterance has the domain goal of finding out about how to save a file

while in the editor.2 She also has the discourse goal of indicating that she expects the dia

logue to terminate after this problem has been resolved. While awareness of this latter

goal may not be useful to a system that simply performs rote question answering, it will

be helpful to a more advanced system in planning its own utterances.

Finally, consider the statement:

User: I have a problem with ls.

The user who initiates a conversation with UC by saying this probably has several goals

in mind, including to initiate a dialogue with uc, to solicit help from uc, and to inform

UC that 'Is' is the topic of the problem. In many systems, goals such as these are not

explicitly inferred. Rather, the system embodies assumptions that its authors have made

about the types of higher-level goals that the system's users will have. Encoding this

type of knowledge procedurally is not necessarily bad. However, the system should have

the ability to represent and treat this knowledge declaratively should the need to do so

arise.

The validity of the horizontal completeness criterion is based on the assumption

that the interests of the system that will use the explanation are not so constrained as to

be single-minded. If the system is single-minded about its goals, then this criterion isn't

useful. For example, a simplistic database lookup program will generally only need to

extract a database query from the user's utterance. It won't matter to such a program

whether a full understanding of an utterance is achieved, only that a database query is

selected. For systems with broader applicability though, this is an important criterion.

3.5. Summary

This chapter introduced three criteria for good explanations of utterances. The

first, the principle of applicability, states that a good explanation of an utterance is one

that is applicable to the needs of the system that will use that explanation. Thus, an

explanation is only a good one relative to some intended purpose. The second criterion,

the principle of grounding, states that a good explanation of an utterance relates what is

2 Of course, the speaker also has the discourse goal of asking how to save the file. However, this goal is subservient to

the domain goal. I am concerned in this section only with multiple goals that are not causally related to one another.

47

inferred from that utterance to what is already known about the speaker and the dialogue.

The last criterion, the principle of completeness, states that a good explanation of an

utterance covers every aspect of the utterance. The principle of completeness is further

broken down into depth completeness and breadth completeness. The depth complete

ness criterion dictates that each component of a good explanation must itself be

explained. The breadth completeness criterion dictates that each component of the utter

ance to be explained must be covered by the explanation. Together, these three criteria

provide a means to determine the quality of an explanation of an utterance.

Chapter 4

Representation of Plans and Goals

Since the vocabulary of goal analysis is plans and goals, any approach to goal
analysis must include a means to represent knowledge about plans and goals. Most

approaches use a hybrid of two representations:

1. STRIPS operators
2. Scripts

These traditional representations have two main problems that limit their usefulness in

goal analysis:

1. The intended effect problem
2. The precondition problem

The intended effect problem arises when a representation fails to distinguish adequately

the intended effect, or goal, of a plan from other outcomes of the plan. The precondition
problem arises when preconditions are used to represent more than one kind of

knowledge. In this chapter, I first describe STRIPS operators and scripts. For each of

these representations, I demonstrate how the intended effect problem and the precondi
tion problem arise. I then introduce a new representation, called a planfor [cf. Wilensky

1983]. This representation combines the good aspects of the script and operator

approaches, while at the same time solving the intended effect problem and the precondi
tion problem. Finally, I discuss some processing advantages provided by planfors.

4.1. STRIPS Operators and Their Descendants

One of the earliest successes in mechanized planning was the STRIPS program
[Fikes et al. 1971]. STRIPS was a planner that constructed plans that a robot could use to

solve simple movement problems. For example, STRIPS might produce a plan for bring

ing a box into a room from an adjacent room, that consisted of first moving into the

48

...

49

adjacent room, then pushing the box into the original room.

STRIPS' knowledge of planning was stored as operators. A STRIPS operator is a

description of how a hypothetical action affects a world model. The world model is a

collection of first-order predicate calculus well-formed formulae (WFF's). Each operator

is composed of a header (the name of the operator together with a list of parameters), a

set of preconditions (conditions that must hold in the world model for the operator to be

applicable), and a description, in the form of WFF's to be added to and deleted from the

world model, of the way in which that operator changes the world model.

OPEN(dx) ; open door dx
preconditions:

TYPE(dx,door),
STATUS(dx,closed),
NEXTTO(robot,dx).

deletions:
STATUS(dx,closed)

additions:
STATUS(dx,open)

Figure 4.1. The STRIPS OPEN Operator

An example of a STRIPS operator is shown in Figure 4.1. This operator represents

the knowledge STRIPS needs to construct plans that include the opening of doors. The

preconditions to the operator are that the object in question is a door, that the door is

closed, and that the robot is next to the door. If the operator is executed, it will change

the model of the world by deleting the fact that the door is closed, and adding the fact

that the door is now open.

BOARD(agent, train, station)
applicability conditions: SOURCE(train, station),

DEPART.LOC(train, loc), DEPART.TIME(train, time)
precondition: AT(agent, loc, time)
effect: ONBOARD(agent, train)

Figure 4.2. The BOARD Plan

More recently, STRIPS operators have been generalized for use in plan recognition.

As a representative example of this approach, I will use the BOARD plan described by

Allen and Perrault [1980]. The BOARD plan is shown in Figure 4.2. This plan represen

tation says that BOARD is a plan with three parameters: an agent to do the boarding, a

train to be boarded, and a station in which the boarding is to be accomplished. The

50

applicability conditions are simply further specifications of the parameters; they indicate
that the train is originating from the station, and that it is leaving from some unspecified
location at some unspecified time. The precondition states that in order to perform a
BOARD, the agent must be AT the unspecified location at the unspecified time. The effect
of performing the BOARD is that the agent is then ONBOARD the train.

4.2. Scripts

Early work in story understanding made use of a representation called a script
[Schank and Abelson, 1977]. A script is a "standard event sequence" [p. 38]. That is, a
script is used to group events that typically occur in fixed (or semi-fixed) sequences. For
example, a restaurant script might include steps for entering the restaurant, ordering food,
being served, eating, paying, and leaving the restaurant. An abridged version of the res
taurant script [p. 43] is shown in Figure 4.3.

$RESTAURANT

entry conditions:
customer is hungry
customer has money

results:
customer has less money
owner has more money
customer is not hungry
customer is pleased (optional)

scene 1: entering
scene 2: ordering
scene 3: eating

• waiter gives food to customer
• customer ingests food

scene 4: exiting

Figure 4.3. The Restaurant Script

Scripts were developed as a way to represent the knowledge needed to understand
simple stories. They are useful for making various inferences about the actions taken by
the characters in the story. Once such an action matches a portion of a script, the
remainder of the script can be used to predict future events. This allows events that con
tinue the script to be processed rapidly. For example, upon learning that Belinda entered
a restaurant, the restaurant script might be instantiated, and the observed event matched
with the first scene of the script The remaining steps in the script could then be used to
facilitate the explanation of subsequent events, such a·s Belinda ordering a grilled tomato
and cheese sandwich, the waiter bringing it, and Belinda paying.

51

Scripts can also be used to infer that events that were not observed actually took

place. In this example, the system might infer that Belinda ate the sandwich, and that she

left the restaurant. Of course, such events may not have taken place at all. However,

because scripts represent typical events, it is likely that under normal circumstances they

did occur.

An important feature of the script representation is that it can group actions taken

by multiple agents into a single framework. Notice that the restaurant script includes

both actions taken by the customer (e.g. customer ingests food), and actions taken by

other important agents (e.g. waiter gives food to customer). Incorporating knowledge

about multiple agents into a plan representation allows planners and understanders that

use that knowledge to make inferences about the actions of other agents without recourse

to complicated analysis of mutual belief. In this example, the system that is using the

$RESTAURANT script to explain Belinda's actions does not need to determine what

beliefs the waiter holds that influence him to bring the food; it may assume that the

waiter will bring the food because that is typically what happens in this situation. In

summary then, scripts provide a good way to associate related actions that are performed

by multiple agents, so as to allow useful inferences about those actions.

4.3. The Intended Effect Problem

Every plan must have an associated goal. It makes little sense to say that a person

has a plan, but that it is not a plan for anything. A major problem with these two families

of plan representations is that the relationship between the plan and the goal the plan is

intended to accomplish is unclear. A plan representation should include an explicit

representation of the goal that normally underlies the use of that plan. The inclusion of

the normal underlying goals in a plan representation constrains the plan recognition

search process, which would otherwise have to examine all the possible effects of an

inferred plan. I call the problem of the lack of an explicit representation of the goal of a

plan the intended effect problem.

Consider first the STRIPS operator representation. While they are useful in plan

ning situations, from an understanding perspective, STRIPS-style operators are not very

useful. The main reason that STRIPS operators are not useful for understanding is that the

logical place to represent the goal of a plan, the effects slot, is allowed to contain multi

ple effects. When an action is observed, and the operator that corresponds to that action

is inferred as an explanation of the action, it remains unclear which of these effects were

intended, and which were merely side-effects. Thus, STRIPS operators represent actions

rather than plans. For example, the BOARD plan might have another effect such as NOT.

AT(agent,loc,time2), indicating that a person who boards a train is no longer on the plat

form. If so, the BOARD plan would not be helpful for determining whether a person who

boarded a train did so in order to be on board the train, or in order to no longer be on the

platform. While an additional effect such as .this might not be a problem for a planner

(which might well want to formulate a plan for leaving a train platform), it is a big prob

lem for an understanding system that is trying to determine why a person would board a

train.

52

Scripts too suffer from the intended effect problem, although this an act of omis

sion rather than one of commission. Scripts in Schank's formulation for example do not

facilitate inferences about the script as a whole. That is, although scripts are useful for

inferring how actions relate to each other, as Wilensky [1978] points out, they are not

useful for inferring how the sum of the actions that compose the script relates to other

knowledge that the system may have. For example, the $RESTAURANT script can be

used to explain why Belinda ordered a sandwich (because that was the action called for

at that point in the script1); without the inclusion of an associated goal in the script how

ever, it cannot be used to explain why she wanted to go to the restaurant in the first place.

4.4. The Precondition Problem

The second main problem with these classes of representations is the precondition

problem. The notion of preconditions typically conflates two different kinds of

knowledge about when a plan is applicable:

1. Definitional knowledge
2. Heuristic planning knowledge

The first kind of knowledge is that of the defining properties of the actions that compose

the plan. For example, part of what it means for an agent to perform an action at a partic

ular location is that the agent is at that location. Or, in Hendler's words [1986, p. 92],

"the set of preconditions for a frame is exactly the frame itself." This kind of precondi

tion is called a definitional precondition.

The other type of knowledge that goes into the traditional notion of preconditions

is heuristic planning knowledge. Preconditions that express heuristic planning

knowledge are called heuristic preconditions. Such knowledge says for example that

being at the location where an action is to take place is an important property of that

action for which planning must often be done. Therefore, a planner should look carefully

at this property to make sure it holds, if it wants to use the plan. At the other extreme,

the property that an agent be able to move in order to perform a physical action, while

certainly a definitional precondition, is nevertheless not a condition with which a planner

would want to concern itself in the absence of some explicit indication that movement

might be impaired. This is because capability of movement is so likely to hold that there

is rarely a case in which failing to consider it will lead to plan failure or plan recognition

failure. Thus, such conditions need not be present as heuristic planning knowledge for

planning or plan recognition to be effective.

1 Notice that this is a non-intentional explanation. That is, it is an explanation rela1ive to a social convention, not to a

personal intention. In omitting intentional infonnation, such explanations are incomplete; they nevertheless may be appli

cable to a particular task.

53

In addition to this confusion about the nature of preconditions, two other problems

are typically found in explicit representations of preconditions. First, any given action

will have many preconditions. For example, to board a train, not only must you be at the

gate prior to the time the train departs, but the train must also be there, and its doors must

be operational, and you must be able to move, and you must fit through the train doors,

and gravity must still work, etc. The vast number of such preconditions makes their

explicit representation as preconditions to each plan that must use them prohibitive.

Secondly, most preconditions are applicable to many plans. The precondition that one be

at a particular location is applicable to any plan designed to take place in a specified

locale, not just the train-boarding plan. A plan representation should take such com

monalities into account, and represent the appropriate knowledge in only one place.

4.5. The Planfor Representation

To address these problems, the concept of a planfor is useful [cf. Wilensky 1983].

A planfor is a relation between a type of goal and a hypothetical event (called a plan) that

constitutes a possible method of achieving a goal of that type. Typically, such plans

represent compound events composed of a partially ordered set of hypothetical actions.

Planfors unite the idea of a script as a way to group related actions of multiple agents

with the notion of a plan that is being pursued by a single actor in order to achieve a par

ticular goal. Planfors highlight the notion that a plan is a way to achieve a goal, as

opposed to an abstract structure bearing no direct explicit relation to a goal. They also

allow that a planner may intend that another agent perform some action as a part of the

plan, without being in a position to control the other agent's performance of the action.

The following examples illustrate these points.

A planfor can be used to associate a goal with a plan of any type. For example,

any simple indirect speech act of the form:

Do you know how to perform task?

can be associated with a goal by this planfor:

Goal: Speaker ask hearer how to perform task
Plan: Speaker ask hearer whether hearer knows how to perform task

Planfors can also be used to represent knowledge about dialogue. A question and

answer sequence aimed at finding out how to perform a particular task can be represented

by this planfor:

Goal: Speaker know how to perform task
Plan: Speaker ask hearer how to perform task

Hearer tell speaker how to perform task

54

Notice that the plan in this example includes an action on the part of the hearer that is not

under the speaker's control. I draw a distinction between a plan, which is an abstract

sequence of one or more steps aimed at achieving a particular goal, and the specific

sequence of actions that a planner executes in conforming to such a plan. The former

may include actions by agents other than the planner. The latter is the planner's imple

mentation of the plan, and therefore includes only actions taken by the planner. Such

actions may include waiting for some agent other than the planner to perform an action.

Finally, planfors can be used to represent the relationship between plans and goals

in the domain of discourse. For example, knowledge about the UNIX cp command can

be represented as:

Goal: Have copy of file 1 in file2
Plan: Execute cp program with argl =name of filel, arg2 =name of file2

The use of planfors allows plans of different types to be combined and associated

with a single goal. For example, the first two planfors shown above can be combined to

express both an indirect speech act and a question and answer sequence:

Goal: Speaker know how to perform task
Plan: Speaker ask hearer whether hearer knows how to perform task

Hearer tell speaker how to perform task

4.5.1. Solution to the Intended Effect Problem

The intended effect problem arises because the representation of plan knowledge

expresses facts about causality, but the knowledge needed for goal analysis is knowledge

of intention and typicality. Planfors solve this problem by explicitly representing

knowledge of typical intention. In fact, planfors do not represent fundamental

knowledge of causality at all. There is usually a causal relationship between a plan and a

goal that are connected by a planfor. However, the planfor itself does not represent the

causality. What the planfor does represent is a notion of typicality. It indicates that its

plan is one that is typically or conventionally used to achieve its goal. 2 For example, the

UNIX rm command may cause a file to be deleted. It may also cause the disk arm to be

moved. It would be a mistake though to say that rm should be connected to the goal of

moving the disk arm by a planfor relation; rm is simply not something one would typi

cally use to move the disk arm. On the other hand, rm should be connected to the goal of

deleting a file by a planfor relation, since this is the goal for which rm is typically used.

By using planfors as inference rules in plan recognition, the search space for explanations

can be greatly restricted.

2 It may also be the case that a plan is the normal plan for its associated goal, but this condition is not a part of the

meaning of a planfor.

55

Planfors do not represent immediate knowledge of actions. Rather, they represent
compiled knowledge of the effects that actions typically have. Consequently, planfors do
not represent the last word in goal analysis knowledge. If planfor-based goal analysis
fails, the system should have the option of retreating to action-based goal analysis. Such
analysis will be more costly than planfor analysis, precisely because planfors represent
compiled knowledge. For example, it is possible that a user could use rm so as to move
the disk arm. However, since these two are not connected via a planfor, planfor analysis
will not be useful in understanding this scenario. Rm is connected to the goal of movin~
the disk arm by a causal relation though, since rm can cause the disk arm to be moved.
Such causal knowledge is useful in understanding this scenario. However, in moving
from planfor analysis to causality analysis, the system may need to examine all the possi
ble effects of using rm; doing so can be costly, and consequently planfor analysis is to be
preferred over causality analysis.

Another type of processing that may need to be called into play if planfor analysis
fails is analysis of mutual belief. It is the embodiment of convention in planfors that
allows PAGAN to perform goal analysis without requiring knowledge of mutual belief.
However, if planfor analysis is not sufficient to understand an utterance, it may be neces
sary for the system to determine which facts are mutually believed, and to use that infor
mation to explain the utterance. Allen [1979] describes methods for representing mutual
belief, and using it to explain an utterance.

4.5.2. Solution to the Precondition Problem

Planfors solve the precondition problem by distinguishing between heuristic plan
ning knowledge and knowledge of the defining properties of actions. First, unlike for
malisms derivative of STRIPS operators, planfors do not explicitly represent heuristic
preconditions at all. Rather, an agent such as a planner or a goal analyzer that requires
such knowledge has the option of adding it on top of the planfor representation. For
example, to delete a UNIX file, it is necessary both that the parent directory is writable,
and that the disk arm is operational. A planner might want to have special metaplan
knowledge that it should check the protections on the parent directory before settling
upon a plan that involves deletion; it probably would not want to attach the same degree
of importance to checking the status of the disk arm before using deletion as a plan step.
Luria [1987, 1988] presents a planner called KIP that makes decisions based on this
notion of 'degree of concern.'

Secondly, in the planfor representation, definitional preconditions are represented
as constraints on the concepts that make up the plan. This is done by placing each com
ponent concept at its correct location in the knowledge hierarchy. The use of a hierarchi
cal formalism that allows inheritance (such as a semantic net) is dictated by these con
siderations.

3 Such a causal relation is unlikely to be explicitly represented in. the knowledge base; rather, it would have to be in·
ferred from more basic knowledge about rm and disk arms.

56

situated actor 1101!<<-------- object ----~'"

1' ~00
location

object ~-of
object object ~ actor

goal plan

bo~arding·a: event

B ction

vehic

ftZ location

location object

·object

~
Figure 4.4. Representation of the AT precondition of the BOARD plan

The upper right portion of this diagram shows how a SITUATED-ACfiON is defined so as to
restrict the actor to be at the same place (i.e. the SITUATED-EVENT-LOCATION) as the action.
The remainder of the diagram shows how a boarding action can be defined as a situated ac
tion.

As an example, suppose the BOARD plan were to be expressed in the planfor
representation. The AT(agent,loc,time) precondition indicates that the agent of the plan
must be at the specified location at the specified time for the plan to be useful. In a plan
for, this precondition would be represented by forming a single SITUATED-ACTOR con
cept. Know ledge about the time and location of the event would be predicated about this
new concept. SITUATED-ACTOR would also be used in place of the more general ACTOR
concept as the actor of the boarding action. Thus, the time and location of the event
would be part of the representation of the event itself, rather than being tacked on as
additional preconditions. A picture of the relevant portion of this representation is shown
in Figure 4.4. To simplify the diagram, the direct relationship between the train and the
boarding event is not shown.

57

Rather than being attached to individual plans, definitional preconditions are now a

part of the knowledge hierarchy at large. This means that the huge number of precondi

tions, while still a problem, is not a problem for plan representation; rather, the burden of

maintaining a large number of facts is placed on the knowledge base as a whole, where it

belongs. Furthermore, preconditions that are applicable to more than one plan can be

placed above each such plan in the knowledge hierarchy. This allows the information to

be placed in a single location, yet be available via inheritance to each plan that needs it.

It would be delightful if it were possible to use the defining properties of actions to

automatically infer heuristic preconditions. Unfortunately, there are several obstacles

that any such method must overcome. First, the system must have detailed knowledge

about which events make up the background knowledge needed for the understanding of

each action. Secondly, the system must have causal knowledge about how (or whether)

each component of this background contributes to the action in question. Thirdly, the

system must have some way to cope with the frame problem that arises when considering

the effects of the events it is testing as potential heuristic preconditions. Each of these

obstacles is significant; consequently, the best way to maintain knowledge of heuristic

preconditions is to express such knowledge explicitly in the knowledge base.

4.5.3. Processing Advantages

In addition to the representational advantages discussed above, planfors also pro

vide processing advantages. Planfors allow PAGAN to combine certain inferences that

should be kept together:

1. Inferences about plans and goals
2. Inferences about actions and intended responses
3. Inferences about linguistic goals and domain goals

First, inferences about plans may be made at the same time as those about goals. This is

in contrast with systems such as Wilensky's PAM system [1978] that infer plans and

goals separately. When analyzing the sentence "John walked over to Bill," for example

[pp. 37-38], PAM first infers that the action of walking was used as part of the plan for

John's moving under his own power. It then tries to find a reason that he was pursuing

that plan, and infers that John has the goal of being near Bill. If a planfor relation were

used to represent the knowledge required to make these inferences, both of the inferences

could be made simultaneously. Once a planfor has been inferred to explain an action,

both the plan and the goal of the plan are immediately available without additional pro

cessing. Thus, the use of planfors in plan recognition incorporate Allen's separately

defined Precondition-Action Rule, Body-Action Rule, and Action-Effect Rule (described

in Chapter 2) into a single class of inference rule.

Secondly, inferences about plan recognition and inferences about intended

response recognition may be combined when using planfors. This is done by including

the intended response in the plan and associating this entire plan with a single goal. This

contrasts with the operation of systems such as Sidner's [1985] that first perform plan

58

recognition, then worry about what response was intended. For example, in trying to
explain the statement "I want the vase on the table," Sidner's system would first infer
that the speaker had the plan of informing the system about the goal of having the vase
on the table. It would then go on to make a separate inference that the speaker expects
that the system will respond by adopting that goal, and placing the vase on the table. The
use of planfors allows both of these inferences to be made concurrently. In this example,
a planfor could be used that included a two-step plan: first that the speaker state a goal,
then that the hearer respond by satisfying that goal. The ability to perform both kinds of
inference simultaneously conforms to the intuition that no extra processing is required to
determine for example that an answer is expected once the realization is made that a
question has been asked.

Finally, planfors allow inferences about linguistic goals and about domain goals to
be handled by a single inference engine. The separation of goal analysis into linguistic
goal reasoning and task goal reasoning [cf. Allen, Frisch, and Litman 1982] is unneces
sary; the difference between the two lies only in the type of actions that make up the
steps of the plan, not the form that those plans take. For example, both the communica
tive plan of asking a question, and the domain plan of using rm, can be represented by
planfors. The same processes that explain and disambiguate questions can then be used
to explain and disambiguate uses of rm.

4.6. Summary

This chapter introduced a representation for knowledge about plans and goals
called a planfor. A planfor is a relation between a type of goal and a hypothetical event
(called a plan) that constitutes a possible method of achieving a goal of that type. Plan
fors solve two problems found in other approaches to plan representation. First, planfors
explicitly distinguish the intended effect of a plan from other effects of the plan.
Secondly, planfors distinguish definitional properties of the events that make up a plan
from heuristic planning knowledge about that plan. In addition to solving these prob
lems, planfors allow inferences about plans, about goals, and about expected actions to
be made concurrently, as opposed to performing each type of inference individually.

I

"'

Chapter 5

Finding an Explanation

Recall from Chapter 1 that the goal analysis algorithm is divided into three steps:

finding an explanation, handling ambiguity, and extending the explanation. This chapter

is devoted to the first step of the algorithm. Chapters 6 and 7 cover the processes of

detecting and handling ~biguity. Finally, Chapter 8 discusses the conditions under

which an explanation of an utterance is extended.

The first step of the goal analysis algorithm is to find an explanation for the utter

ance. The method suggested here is a variant of the PAM explanation algorithm [Wilen

sky 1978], adapted for use in dialogue. There are three places that PAGAN may find an

explanation for an utterance:

1. Among its expectations of speaker actions
2. Among the abstract planfors in its knowledge base
3. Among the non-intentional explanations in its knowledge base

Each of these sources is described in one of the following sections.

5.1. Meeting an Expectation

The first place that PAGAN may find an explanation for an utterance is among its

expectations of actions to be taken by the speaker. PAGAN maintains a representation of

the structure of the dialogue that has transpired. This model is composed of plans and

goals, along with the status of each plan. It may contain plans that have not yet been

completed. When an action to be explained matches a pending step of a partially exe

cuted plan, the goal associated with that plan constitutes a possible explanation of the

action. The process of comparing an utterance to pending plan steps is called expectation

matching.

59

60

5.2. Finding an Intentional Explanation

The second place that PAGAN may find an explanation for an utterance is among

the set of abstract planfors that it maintains. When the action to be explained is found as

the first step of the plan of such a planfor (or as one of its possible first steps, if it is a par

tially ordered plan with more than one possible first step), then the goal of that planfor

constitutes a possible explanation of the action. When I refer to an utterance 'matching'

a planfor, I mean that it matches a plan step in this way. The process of finding planfor

explanations for an utterance in long-term memory is called planfor retrieval.

Expectation matching is always preferable to finding an explanation that is unre

lated to the previous dialogue. This is because people try to be coherent in their dia

logues, and expectation matching reflects such coherence. Thus, like PAM (see Chapter

2), PAGAN always checks first for an explanation of an utterance in its dialogue model.

Doing so causes PAGAN to prefer explanations that are grounded in what is known about

the dialogue. PAGAN will look for an explanation among the abstract planfors it knows

only if it does not find an expected action that matches the utterance. For example, con

sider the process of trying to explain the statement:

User: My file takes up 60 blocks.

If uc had just asked the question:

UC: How big is your file?

then it would make little sense to interpret the user's statement as a request to be told

how to reduce the size of the file. The expectation of an answer to the question provides

a more plausible explanation of the utterance.

5.3. Finding a Non-Intentional Explanation

The third place that PAGAN may find an explanation for an utterance is among the

non-intentional explanations in its knowledge base [c.f. Wilensky 1983]. A non

intentional explanation is one that is not based on plans and goals. If PAGAN were pro

cessing the question: ·

User: How can I print a double-spaced draft of my paper?

it might reason as follows: The user wants to know how to print the draft because she

wants to print it She wants to print it because she wants to edit it off-line. At this point,

the non-intentional explanation 'people often edit their papers' could be used to explain

the goal of editing. Thus, the intentional reasons that the user might want to edit the file

would not need to be inferred.

61

Themes, as described by Schank and Abelson [1977], are a kind of non-intentional

explanation. Themes are concepts that ''contain the background information upon which

we base our predictions that an individual will have a certain goal" [p. 132]. For exam

ple, the 'preservation of resources' theme might provide a non-intentional explanation of

the goal of preserving a particular file.

Non-intentional explanations are sought when expectation matching yields no

explanations and PAGAN determines that it should no longer seek a planfor explanation

of the utterance (see Chapter 8), or when no planfor explanation is extant. There are two

reasons for treating non-intentional explanations as explanations of last resort. First, a

non-intentional explanation generally does not meet the criterion of applicability as well

as does an intentional explanation for the same event. The obvious exceptions to this are

when the explanation chain being analyzed has already been determined to be inapplica

ble to the task of the parent system, or when no intentional explanation of the event can

be found. The second reason for preferring intentional explanations is that they are more

likely to meet the grounding criterion; the adoption of a non-intentional explanation

assures the termination of the explanation chain, eliminating the opportunity for further

grounding.

5.4. Implementation

Plan recognition systems have traditionally relied on structure matching to locate

potential explanations of an event. Unfortunately, structure matching suffers from a

variety of problems that make it inefficient for this task. In the following sections, I first

describe the structure matching paradigm, and the problems with it. Next, I detail an

alternative to matching that solves many of these problems. Finally, I show how this

approach can be used to find the three classes of explanations for an utterance described

above.

5.4.1. The Structure Matching Paradigm
I

The traditional approach to abductive inference for language comprehension

encodes abductive inference rules as templates or schemas. In trying to locate rules that

might be useful in explaining an input, such systems compare the input against a set of

candidate templates. The comparison is performed by a matching algorithm such as

unification. In this structure matching paradigm, the two structures are compared piece

by-piece to determine whether any incompatibilities exist between them. Most matchers

allow the structures they are matching against one another to contain variables. These

variables serve two purposes. First, they allow a concept such as a plan schema to be

expressed in general terms that may account for a wide range of observed phenomena.

Secondly, they are useful in requiring that two different portions of a pattern match

exactly the same concept.

62

The structure matching paradigm is deficient as a tool for retrieving explanations in

four ways:

1. The matcher must keep track of variable bindings
2. The boundaries of the pattern must be known in advance
3. The entire computational expense is incurred when matching commences
4. Partial results of failed matches are not cached

First, a matcher requires a complicated mechanism for keeping track of variable bindings

as matching proceeds. In addition to being cumbersome, these bindings may have to be

retracted if backtracking is used. Secondly, structure matching requires that the limits of

the pattern to be matched (that is, the set of concepts that are part of the pattern) be deter

mined before matching commences. Exactly and only those concepts that are deemed to

be a part of the pattern may be compared during matching. Thirdly, the matching para

digm incurs its entire computational expense at the time of its explicit invocation. There

is no provision for doing part of the work before a comparison is requested. Finally, all

results of a failed match are lost, even when a portion of those results may be applicable

to other patterns.

In the following sections, I detail a method that can be used to locate potential

explanations for an utterance without the use of an explicitly-invoked pattern matcher.

This technique works by making many individual categorization inferences based on

highly localized knowledge. Not only does this inethod obviate the need for structure

matching and variables, but it allows the categorization inferences to be made as

knowledge is added to the system, instead of when an explanation is required.

5.4.2. The Local Categorization Paradigm

Matching in KODIAK is performed by two automatic processes that obviate the

need for a goal analyzer to contain an explicit structure matcher. Together, these two

processes facilitate explanation retrieval, without the deficiencies of the matching para

digm identified above. These processes operate on each concept at the time it is intro

duced into the knowledge base, not just to concepts being explained by a goal analyzer.

The first process, concretion, places each new concept at its correct level in the

knowledge hierarchy. Concretion inferences are discussed by Wilensky [1983] and Nor

vig [1983, 1987]. Concretion inferences that are restricted to the logical consequences of

the knowledge hierarchy, called classification inferences, are discussed by Schmolze and

Lipkis [1983]. The second process, equation, ensures that, where required, the same con

cept fills two separate roles. The equation process automatically enforces the mainte

nance of relations such as KODIAK's equate relations [Wilensky 1987a], or KL-ONE's

role value maps [Brachman and Schmolze 1985].

63

5.4.2.1. Concretion

The process of placing an observed action within the action hierarchy is not as sim
ple as associating particular concepts with particular words. It often requires that a spe
cial kind of inference be made called a concretion inference. A concretion inference is
one that moves a concept downward in the knowledge hierarchy, based on the relations
in which the concept takes part. For example, if the observed action is a DELETION, and
the thing being deleted is a DIRECTORY, then the observed action may be moved down
ward from DELETION in the action hierarchy and placed beneath the DIRECTORY

DELETION concept.

The advantage of having a DIRECTORY -DELETION concept, and making appropri
ate concretions to it, is that knowledge specific to the deletion of a directory (such as that
it can be accomplished with the rmdir command in UNIX) can be attached directly to that
concept. This obviates the need for a process that discriminates between various types of
DELETION at knowledge retrieval time, while at the same time ensuring that only appli
cable knowledge is retrieved. A diagram of the knowledge needed to make this kind of
inference is shown in Figure 5.1.

ftZ
plan goal

/
"nn" PLAN "nndir" PLAN

deletion d etion

o~e f
d leti n .

~ect

):!:
object

~ /
FILE DIRECfORY

Figure 5.1. Knowledge Needed for Concreting DELETION to DIRECTORY-DELETION

5.4.2.2. Equation

The second automatic process is called equation. Equation is the process of infer
ring that a concept that plays one role also plays another. Consider the notion of a state
change. A state change has two components, the before-state and the after-state. For
example, a file deletion might be expressed as a state change from the file existing to the

64

file not existing.

It is unreasonable to compose a state change out of any two states. It would not for
example make sense to say that there was a state change from George Bush being

President to Jerome Garcia being Band leader. The reason is that to count as a state
change, both the start state and the final state must be states of the same concept. The
equation process is responsible for ensuring that consistency is maintained between

objects that take part in certain relations. In this example, if the the George Bush concept

were assigned to the object of the start state of a particular state change, the equation pro

cess would automatically assert that the object of the final state was also the George Bush

concept.

Processing Example

The use of the automatic processes of concretion and equation can be seen in the
following trace. It shows the parser's processing of the question:

User: How do I delete a file?

Each grammar rule is associated with a function that builds the semantics of the left hand

side out of the semantics of the elements of the right hand side. Notice that as the seman
tics are being built, concretion and equation are automatically making inferences about
them. For example, after the TRANSITIVE-VP is recognized, the DELETION concept is

automatically concreted to be a FILE-DELETION because the object being deleted is a

FILE.

User: How do I delete a file?

Applying semantics for AUX =>DO

Applying semantics for NP2 =>I

Applying semantics for NP => NP2

Applying semantics for TRANSITIVE-VERB => DELETE

Applying semantics for ARTICLE => A

Applying semantics for NOMINAL=> FILE

Applying semantics for NP2 => ARTICLE NOMINAL

Applying semantics for NP => NP2

Applying semantics for TRANSITIVE-VP =>TRANSITIVE-VERB NP

The parser is building the semantics for 'delete a file.' It asserts that the ob
ject being deleted is a file, and KODIAK then automatically concretes the
DELETION to be a FILE-DELETION. It goes on to concrete the STATE

CHANGE-OBJECT slot of the deletion to be a STATE-CHANGE-OBJECT-OF

FILE-DELETION.

Concreting DELETIONS to be FILE-DELETION.

Concreting STATE-CHANGE-OBJECT6 to be STATE-CHANGE-OBJECT-OF-FILE-DELETION.

Applying semantics for VP2 => TRANSITIVE-VP

Applying semantics for VP => VP2

Applying semantics for SEJ\'TENCE => NP VP

The DELETE-ACTION to which the user has referred is now concreted to be a

FILE-DELETE-ACTION.

Concreting DELETE-ACTION4 to be FILE-DELETE-ACTION.

Concreting CAUSES-OF-DELETE-ACTION6 to be CAUSES-OF-FILE-DELETE-ACTION.

Applying semantics for SENTENCE=> HOW AUX SENTENCE

The SPEAKER and the ACTOR of a TELL-ACTION are represented as separate

slots. Here they are automatically asserted to refer to the same concept.

Equating the range of SPEAKER12 (which is ANIMATE)

with the range of ACTOR26 (which is USER).

Since the object of the TELL-ACTION is a question, the TELL-ACTION is con

creted to be an ASK-QUESTION. Once this concretion is made, the concretion

to ASK-SPECIFICATION-QUESTION can be made. This concretion cannot be

done at the outset, because the automatic concretion mechanism moves down

ward through the hierarchy one link at a time.

Concreting TELL-ACTIONlS to be ASK-QUESTION.

Concreting UTTERANCE13 to be UTTERANCE-OF-ASK-QUESTION.

Concreting TELL-ACTIONlS to be ASK-SPECIFICATION-QUESTION.

Concreting UTTERANCE13 to be UTTERANCE-OF-ASK-SPECIFICATION-QUESTION.

The parser produced the following interpretation:

Interpretation 1 (TELL-ACTIONlS):

(HAS-GOAL22 (DOMAIN USER)

(RANGE

(TELL-ACTIONlS (DOMINATED BY ASK-SPECIFICATION-QUESTION) (ACTOR26 =USER)

(HEARER13 =UNIX-CONSULTANT) (SPEAKER12 =USER)

(UTTERANCE13 =

(SPECIFICATION-QUESTION4 (DOMINATED BY SPECIFICATION-QUESTION)

(WHAT-IS12 =

(DELETE-ACTION4 (DOMINATED BY FILE-DELETE-ACTION) (ACTOR25 =USER)

(CAUSES-OF -DELETE-ACTION6 =

(DELETIONS (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT6 = (FILE4 (DOMINATED BY FILE))))))))))))

5.4.2.3. Advantages of the Local Categorization Paradigm

65

The use of equation and concretion allows matching to be performed without the

disadvantages inherent in the structure matching approach. First, there is no longer a

need for variables. The first function of variables, to allow a wide variety of concepts to

fill a particular slot, is now achieved by specifying the single concept in the knowledge

66

hierarchy that has the proper level of abstraction. For example, if the pattern must allow

any human being to fill a particular slot, then the concept 'person' is used for that slot.

The other function of variables, to ensure that two or more slots are filled by exactly the

same concept, is now achieved by equating those slots, and allowing the equation process

to enforce that rule.

The second criticism of the structure matching paradigm was that it requires that

the boundaries of the pattern be known before matching commences. In contrast, the

local categorization approach only needs to include in the definition of a concept C those

related concepts R that directly contribute to C's definition; the definitions of the concepts

in R are not part of the definition of C.

The third criticism of the matching paradigm was that it incurs its entire computa

tional expense during explicit calls to the matcher. The local categorization paradigm

performs its work in small pieces, as knowledge is added to the knowledge base. For

example, when the knowledge is added that the object of a particular DELETION is a

FILE, that DELETION can immediately be concreted to a FILE-DELETION.

Finally, the structure matching paradigm throws away partial results of failed

matches. The processes of equation and concretion on the other hand register every

inference they make permanently. These inferences are composed of single facts, each

of which corresponds to a piece of a pattern that a structure matcher would use. Thus,

the local categorization approach effectively caches portions of a match.

5.4.3. Finding a Known Explanation: Expectation Matching

Expectation matching is a subset of the process of grounding an utterance in what

is already known of the speaker and of the dialogue. It aids in building explanations that

are well-grounded by examining the utterance to determine whether it serves as a con

tinuation of a plan that the speaker is known to be pursuing. If so, it is taken to be that

expected action, and the goal that was already inferred to explain that action is an expla

nation of the utterance. In other words, an expectation is matched when the speaker is

simply continuing some known plan. Expectation matching has been used in virtually

every plan recognition system. For example, Wilensky's PAM story understanding sys

tem [1978] checked first in its representation of the story so far for an explanation of a

new sentence. See also Allen and Perrault [1980], Pollack [1984], and Litman [1985] for

various treatments of the problem of expectation matching. Note that I am not concerned

here with the ways in which general inference processes (such as causal inference) mesh

with expectation matching. See Bobrow et al. [1977] for an approach to this problem.

Expectation matching is tested by asserting that the action to be explained lies

below (in the knowledge hierarchy) the next step of the most recently continued plan.

An expectation is matched when the processes of concretion and equation find no

conflicts based on this assertion. A conflict arises when two concepts that are in mutually

exclusive portions of the knowledge hierarchy are equated, or are placed in a hierarchical

relationship.

67

If an expected action is not matched in this way, that action's parent plan (that is,

the plan in which the goal associated with the expected action plays a part) is itself exam
ined as a possible source of an explanation. This process continues until an expected
plan step is matched, or until all expected actions have been examined. PAGAN also
checks in this manner for grounding by goal achievement That is, after it checks a par
ticular plan step for expectation matching, PAGAN performs the same check on its associ

ated goal.

Because one dialogue participant is not obliged to continue a plan being pursued
by another, PAGAN must monitor the progress of active plans. If an observed action is a

continuation of an ongoing plan, nothing besides expectation matching need be done. If

on the other hand a particular action is expected and a different action is observed,
PAGAN must not only explain the new action, but it must also update its representation of

previously inferred plans and goals to reflect this change in expectations. Of particular
importance is the status of a plan initiated by UC in which the user is expected to, but has
not yet, engaged. Because the user has not yet demonstrated a willingness to cooperate

in such a situation, PAGAN must refrain from imputing the goal of such a plan to the user
until the user is seen to continue the plan. Only then may PAGAN include the goal of the
planfor as part of the user's goal structure. When the user is observed to continue such a

plan, the user is said to have adopted that plan.

Processing Example

As an example of expectation matching, consider the following brief exchange:

uc: Is the file in your directory?
User: Yes.

The following trace shows PAGAN's processing of the user's utterance in the context of

UC's question. PAGAN first tries to determine whether the user's response, TELL

ACTION17, is grounded in the preceding dialogue. The response does match the expecta

tion of an answer to the question, and so that expectation is taken to be an explanation of

the utterance.

uc: Is the file in your directory?
User: Yes.

The parser produced the following interpretation:

Interpretation 1 (TELL-ACTION17):

(HAS-GOAL22 (DOMAIN USER)

(RANGE

(TELL-ACTION17 (DOMINATED BY INDICATE-YES) (ACTOR21 =USER)

(HEARER14 = UNIX-CONSULTAI\'T) (SPEAKER13 =USER)

(UTTERANCE14 =AFFIRMATIVE))))

68

uc' s question has set up the expectation that the user will respond with yes or

no. This expectation is represented as INDICATE-YES-OR-NO below. The

user's response of 'yes' is found to meet this expectation.

Attempting to find an explanation for TELL-ACTION17.

Determining whether TELL-ACTION17 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION17 in INDICATE-YES-OR-NO.

TELL-ACTION17 was grounded.

Explanation found for TELL-ACTION17.

5.4.4. Finding a New Explanation: Planfor Retrieval

PAGAN uses planfors as abductive rules for inferring new explanations of an utter..:

ance. Doing so is a two-step process:

1. Selection of a planfor
2. Incorporation of the selected planfor into the dialogue representation

First, PAGAN must select a candidate planfor from among those in its knowledge base.

Secondly, the chosen explanation must be incorporated into the representation of the dia

logue. These steps are discussed in the following sections.

5.4.4.1. Finding Planfors in Long-term Memory

The use of localized categorization makes the task of locating potential planfor

explanations for an utterance a simple one. When semantic interpretation is performed

on the sentence, a representation of the meaning of the sentence is constructed. This

representation is automatically moved downward in the hierarchy by the concretion

mechanism until it reaches the most specific concept that is part of the meaning of the

sentence. This process is similar to the action of the KL-ONE classifier [Schmolze and

Lipkis 1983] in the PSI-KLONE system [Brachman and Schmolze 1985]. Each planfor

that the system knows about is attached to the concept that represents the first step of its

plan. Therefore, to retrieve all the planfors that might explain an utterance, PAGAN need

only start at the node that represents the meaning of the sentence, and collect any plan

fors that are attached to that concept or to any of its ancestors. There is no need to do

any comparison or matching at this point.

Processing Example

The following trace shows PAGAN's initial processing of the question:

69

User: How do I delete a file?

Of note in this trace is the fact that no concretion or equation occurs during planfor

retrieval; all concretion and equation needed for planfor retrieval has already occurred

during semantic analysis, or is done immediately after the previous planfor retrieval.

Thus, planfor retrieval is relatively effortless.

User: How do I delete a file?

A number of concretions and equations are made automatically during seman
tic interpretation. These facilitate the subsequent search for planfor explana
tions of the utterance. In particular, TELL-ACTION23 is concreted first to be
an ASK-QUESTION, then an ASK-SPECIFICATION-QUESTION. This allows
planfors attached to ASK-QUESTION or ASK-SPECIFICATION-QUESTION to be

immediately accessed.

Concreting DELETION'16 to be FILE-DELETION.

Concreting STATE-CHANGE-OBJECT13 to be STATE-CHANGE-OBJECT-OF-FILE-DELETION.

Concreting DELETE-ACTION12 to be FILE-DELETE-ACTION.

Concreting CAUSES-OF-DELETE-ACTION14 to be CAUSES-OF-FILE-DELETE-ACTION.

Equating the range of SPEAKER19 (which is ANIMATE)

with the range of ACTOR29 (which is USER).

Concreting TELL-ACTION23 to be ASK-QUESTION.

Concreting UTTERANCE20 to be UTTERANCE-OF-ASK-QUESTION.

Concreting TELL-ACTION23 to be ASK-SPECIFICATION-QUESTION.

Concreting UTTERANCE20 to be UTTERANCE-OF-ASK-SPECIFICATION-QUESTION.

The parser produced the following interpretation:

Interpretation 1 (TELL-ACTION23):

(HAS-GOAL38 (DOMAIN USER)

(RANGE

(TELL-ACTION23 (DOMINATED BY ASK-SPECIFICATION-QUESTION)

(ACTOR29 =USER) (HEARER20 =UNIX-CONSULTANT) (SPEAKER19 =USER)

(UTTERANCE20 =

(SPECIFICATION-QUESTIONS (DOMINATED BY SPECIFICATION-QUESTION)

(WHAT-IS17 =

(DELETE-ACTION12 (DOMINATED BY FILE-DELETE-ACTION)

(ACTOR28 = USER)

(CAUSES-OF -DELETE-ACTION14 =

(DELETION16 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT13 = (FILE14 (DOMINATED BY FILE))))))))))))

70

Attempting to find an explanation for TELL-ACTION23.

Determining whether TELL-ACTION23 is grounded in the preceding dialogue.

TELL-ACTION23 was not grounded in the preceding dialogue.

Here, a planfor explanation ojTELL-ACTION23 is sought. PLANFOR4 is found
immediately, without any further categorization. A jew equations are subse
quently made, while building the new plan structure.

Trying to find planfor explanations for TELL-ACTION23.

Found PLANFOR4 as an explanation for TELL-ACTION23.

Synopsis:

Goal: know something;

Step 1: ask;
Step 2: be told.

Equating the range of KNOWN12 (which is TlllNG)

with the range of WHAT-IS17 (which is DELETE-ACTION12).

Equating the range ofKNOWER12 (which is Al\"'MATE)

with the range of SPEAKER19 (which is USER).

Inferred goal is KNOWING-THAT6.

Explanation found for TELL-ACTION23.

Attempting to find an explanation for KNOWING-THAT6.

Determining whether KNOWING-THAT6 is grounded in the preceding dialogue.

KNOWING-THAT6 was not grounded in the preceding dialogue.

Once again, the correct planfor is retrieved without any matching at the time
of retrieval. The equations are made only after the planfor has beenfound and
instantiated.

Trying to find planfor explanations for KNOWING-THAT6.

Found PLANFOR8 as an explanation for KNOWING-THAT6.

Synopsis:
Goal: Achieve X;

Step 1: Know how to X;

Step2: Do X

Equating the range of PLANFOR42 (which is EVENT)

with the range of CAUSES-OF-DELETE-ACTION14 (which is DELETION16).

Equating the range of CAUSES-OF-DELETE-ACTION14 (which is DELETION16)

with the range of PLANFOR42 (which is EVENTll).

Equating the range of PLANFOR42 (which is EVENTll)

with the range of CAUSES-OF-DELETE-ACTIONlS (which is EVENT12).

Equating the range of CAUSES-OF-DELETE-ACTION15 (which is EVENT12)

with the range of PLANFOR42 (which is DELETION17).

Equating the range of PLANFOR42 (which is DELETION17)

with the range of CAUSES-OF-DELETE-ACTION15 (which is DELETION18).

Inferred goal is DELETION18. .

71

Explanation found for KNOWING-THAT6.

5.4.4.2. Incorporating an Explanation into the Dialogue Representation

Once an explanation has been found, it must be attached to the representation of

the dialogue, so as to ensure that the explanation is properly grounded. The ways that an

explanation can attach to the model of the dialogue were discussed in Chapter 3. In par

ticular, an explanation may be integrated into the dialogue representation so as to con

tinue a plan, to delay a plan, to reject a plan, to achieve a goal, to question a goal, or to

reject a goal. Continuation of a plan and achievement of a goal have already been dis

cussed in the section above on expectation matching. The other types of integration are

performed by PAGAN only when a higher-level plan is continued (as illustrated in the

processing example below). See Litman and Allen [1984] for a description of how these

types of integration can be implemented in the general case.

Processing Example

This trace shows PAGAN's processing of the user's statement in the following

exchange:

uc: Is the file in your directory?
User: The file is in /tmp.

There are several points to note in this trace. PAGAN's first step is to try to match the

semantic interpretation of the utterance (TELL-ACTION21) against the expectation of a

response to UC's question. When this fails, PAGAN checks for plan rejection. Since the

utterance does not directly match the goal initiated by uc in its question, a planfor expla

nation is sought for the utterance. PAGAN finds such an explanation, and applies the

algorithm recursively. This time, it finds that the inferred goal (KNOWING-WHETHER4)

matches the goal that UC had initiated. Thus, the user has provided a different method

for achieving UC's goal. UC's original plan is therefore rejected. Notice that the match

ing is done simply by attempting to concrete the action to be explained to be an instance

of the concept to be matched. If the concretion is successful, then the match is success

ful; if the concretion fails, then the match is unsuccessful.

uc: Is the file in your directory?

User: The file is in /tmp.

72

Interpretation produced by the parser: TELL-ACTION21

Attempting to find an explanation for TELL-ACTION21.

Determining whether TELL-ACTION21 is grounded in the preceding dialogue.

Here, PAGAN tries to determine whether TELL-ACTION21 is a continuation of
UC' s plan, which calls for a yes/no answer at this point. It does so by assert
ing that it is, then catching the error that results.

Trying to ground TELL-ACTION21 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION21 to be INDICATE-YES-OR-NO.

TELL-ACTION21 was not grounded in INDICATE-YES-OR-NO because:
Can't concrete UTTERANCE18 to UTTERANCE-OF-INDICATE-YES-OR-NO because

the ranges differ.

Next, PAGAN checks whether TELL-ACTION21 constitutes a new plan for uc' s
existing goal of knowing whether the file is in the user's directory. It does this
in the same way that it checked for plan continuation above.

Determining whether TELL-ACTION21 is a new plan for the existing goal of

KNOWING-WHETHER4

TELL-ACTION21 is not a new plan for the existing goal of
KNOWING-WHETHER4 because:
Attempt to concrete incompatibly from TELL-ACTION21 to KNOWING-WHETHER4.

TELL-ACTION21 was not grounded in the preceding dialogue.

Now, PAGAN looks for aplanfor explanation of the utterance. It finds one, and
infers that the user has the goal ofVC knowing whether the file is in the direc
tory.

Trying to find planfor explanations for TELL-ACTION21.

Found PLANFOR3 as an explanation for TELL-ACTION21.

Synopsis:
Goal: hearer know whether X;

Step 1: Tell hearer that X.

Inferred goal is KNOWING-WHETHERS.

Explanation found for TELL-ACTION21.

Attempting to find an explanation for KNOWING-WHETHERS.

Determining whether KNOWING-WHETHERS is grounded in the preceding dialogue.

Once again, PAGAN checks for plan continuation. KNOWING-WHETHERS is
not a type of indicating yes or no, so the check fails.

Trying to ground KNOWING-WHETHERS in INDICATE-YES-OR-NO.

KNOWING-WHETHERS was not grounded in INDICATE-YES-OR-NO because:

Attempt to concrete incompatibly from KNOWING-WHETHERS to INDICATE-YES-OR-NO.

Now, PAGAN checks whether KNOWING-WHETHER5 represents a new plan for
uc' s existing goal. It does, so the old plan is rejected, and processing ter

minates.

DeteiiDining whether KNOWING-WHETHERS is a new plan for the existing goal of

KNOWING-WHETHER4
KNOWING-WHETHERS is a new plan for the existing goal ofKNOWING-WHETHER4

Existing plan PLAN49 has been rejected; new plan is PLAN53.

Explanation found for KNOWING-WHETHERS.

5.4.5. Finding Thematic and Non-Intentional Explanations

73

The third type of explanation available to PAGAN is a thematic or non-intentional

explanation. Like planfor explanations, thematic explanations can be associated with

particular concepts in the knowledge hierarchy. When an action is to be explained,

thematic and non-intentional explanations can be sought at the same time that planfor

explanations are being sought. Thus, localized categorization also allows the retrieval of

themes without the use of structure matching.

If only a thematic or non-intentional explanation is found, it is used as the explana

tion of the utterance, and no more processing need be done. If both a planfor explanation

and a non-intentional explanation is found, the rules for deciding whether to continue the

analysis (described in Chapter 8) are used to select one of the explanations. If analysis is

to continue, the planfor explanation is selected; if analysis is to halt, the non-intentional

explanation is chosen.

Processing Example

Here is a simple example of an utterance that matches a common non-intentional

explanation: that people like to talk about the weather:

User: The weather is nice.

PAGAN doesn't check for a planfor explanation of this utterance, because it determines

that the explanation is complete (see Chapter 8 for an explanation of how PAGAN decides

whether an explanation is complete). PAGAN then looks for a theme to explain the utter

ance, and finds the 'talk about the weather' theme. It uses this theme as an explanation

of the utterance.

User: The weather is nice.

74

Interpretation produced by the parser: TELL-ACTIONlS

Determining whether to chain on TELL-ACTIONlS.

Determining whether TELL-ACTIONlS is a complete explanation of (THE WEATHER IS NICE).

Determining whether TELL-ACTION IS is outside of UC's domain of expertise.

TELL-ACTIONlS is outside of uc's domain of expertise.

Determining whether TELL-ACTION15 is explained by a theme.

TELL-ACTIONlS is explained by the TALK-ABOUT-WEATHER-THEME.

After determining that talking about the weather is outside of VC' s domain of

expertise, the utterance is immediately connected to the theme of talking about

the weather.

The explanation is complete.
Chaining should not be done on TELL-ACTIONlS.

5.5. Summary

An explanation of an utterance (or of an inferred goal) can be found either among

the expected actions found in the dialogue model, among the set of intentional explana

tions in the knowledge base, or among the set of non-intentional explanations in the

knowledge base. The retrieval of each of these types of explanation is facilitated by a

matching paradigm that focuses on making many local categorizations instead of match

ing large structures against one another. This local categorization paradigm is imple

mented by two automatic processes called concretion and equation. The use of these

processes allows explanations to be retrieved directly, without large-scale structure

matching.

Chapter 6

Sources of Ambiguity

It is possible for a speaker to say something that legitimately has more than one

interpretation, and that a human hearer cannot disambiguate. Consider for example:

User: How can I save my program in a file?

Unless some discourse has preceded this utterance that gives some clue as to the referent

of the word program, it is impossible to distinguish which of the following two interpre

tations the speaker intended:

1. How can I save the source code of my program in a file?
2. How can I save the executable code of my program in a file?

This is real ambiguity. Real ambiguity is a property of an utterance set in a particular

context. Any goal analysis algorithm, when presented with an utterance that exhibits real

ambiguity, should detect such an ambiguity.

Given that a speaker does not intend to be ambiguous, it is rare that real ambiguity

exists in an utterance. This is because 'context' (a combination of knowledge of the

speaker, of the dialogue, and of the world) typically combines with knowledge of the

sentence uttered to promote one particular interpretation of the utterance. Under these

circumstances, if a system attempting to understand an utterance notices a'1 ambiguity, it

is because that system failed to take into account some portion of the applicable context.

This kind of ambiguity is called resolvable ambiguity. Resolvable ambiguity occurs

when two or more interpretations of an utterance that does not exhibit real ambiguity

exist concurrently at some point during the processing of that utterance. For example,

the second utterance in the sequence:

User: I just typed my program into the vi editor.
User: How can I save my program in a file?

75

76

is open to the same two interpretations as is the previous example. However, the first

utterance in the sequence provides a context against which this ambiguity may be

resolved. Thus, if the statement appears ambiguous, it does so only briefly during the

time that it is being processed; there is no ambiguity in its final interpretation.

It is important to note that resolvable ambiguity is a byproduct of an algorithm, not

a property of an utterance. Given the same utterance to be explained, different algo

rithms may encounter different resolvable ambiguities. However, because regularities

exist in the use of language, resolvable ambiguities that reflect those regularities will be

noticed by any goal analysis algorithm that is engineered around them.

This chapter is concerned with the ways that resolvable ambiguity can arise during

goal analysis. For the purposes of the rest of this dissertation, 'ambiguity' will refer to

resolvable ambiguity unless explicitly stated otherwise. In this chapter, I describe several

phenomena that may be encountered during goal analysis that can give rise to ambiguity,

and show how ambiguity can be detected (or, where appropriate, how its detection can be

avoided). In Chapter 7, I describe two methods for handling ambiguity: resolving it, and

disregarding it.

There are three classes of ambiguity with which any goal analyzer must contend:

1. Sentence ambiguity
2. Utterance ambiguity
3. Goal ambiguity

Sentence ambiguity is ambiguity that arises when the sentence to be analyzed has

more than one interpretation independent of its use. Utterance ambiguity is ambiguity

that is inherent to the utterance being analyzed when set in a particular context. Goal

ambiguity is ambiguity that arises when more than one known plan includes the action to

be explained, and consequently there is more than one goal that might explain it. Much

research has been devoted to detecting and resolving several subcategories of these types

of ambiguity. Classes of ambiguity that have received much attention in AI, linguistics,

philosophy, and psychology are lexical ambiguity, structural ambiguity, and referential

ambiguity. My interest in these forms of ambiguity stems from the fact that, while many

techniques are available for resolving such ambiguities (see Small et al. [1988] for a

variety of approaches), not all ambiguities are resolvable prior to goal analysis. Thus the

goal analyzer must be able to handle cases in which its input is ambiguous.

6.1. Sentence Ambiguity

Sentence ambiguity is ambiguity that is intrinsic to a sentence, independent of the

context of that sentence. The two most common forms of sentence ambiguity:

1. Lexical ambiguity
2. Structural ambiguity

77

Words or phrases that have more than one sense can give rise to sentence ambiguity that

is called lexical ambiguity. Under the rubric of lexically ambiguous terms, I include

metonymic references, misspelled words with multiple plausible corrections, and, when

the input is speech rather than written text, homonyms. The second major kind of sen

tence ambiguity is structural ambiguity. Structural ambiguity arises when there is more

than one possible parse tree for a single sentence. Each of these types of ambiguity can

be attributed to a sentence independent of its use in an utterance. Other types of sentence

ambiguity have also been discussed in the literature, as for example ambiguity of scope.

Birnbaum [1985] points out that to properly handle lexical ambiguity, memory and infer

ence techniques must be integrated into language analysis. PAGAN represents a step in

this direction.

6.2. Utterance Ambiguity

Utterance ambiguity is ambiguity that is inherent to the utterance being analyzed

when set in a particular context. That is, a sentence with a single interpretation indepen

dent of context that may mean different things when used in different contexts exhibits

utterance ambiguity. There are three kinds of utterance ambiguity:

1. Referential ambiguity
2. Categorization ambiguity
3. Topic ambiguity

Referential ambiguity arises when more than one potential referent for a concept is

hypothesized at some point in the analysis of an utterance. Categorization ambiguity

stems from the existence of more than one subcategory into which a concept of a particu

lar category may be placed. Topic ambiguity arises when more than one concept might

serve as the primary focus of an utterance. These types of ambiguity are discussed in the

following sections.

6.2.1. Referential Ambiguity

The first class of utterance ambiguity, called referential ambiguity, involves prob

lems of reference. For example, consider the utterances:

User: My directory has a file in it that I don't want.
User: How can I get rid of it?

In this example, the word 'it' in the second sentence could refer either to the file, or to the

directory. There is no feature within the second sentence that can be used to isolate the

correct referent. Although a focus mechanism [Grosz, 1978] will narrow the field to two

possible referents, the file and the directory, it cannot by itself resolve the reference. 1

1 To see this, imagine that the second utterance had instead been "How can I clear it out?"

78

Thus, when goal analysis commences, the ambiguity persists.

6.2.2. Categorization Ambiguity

The second kind of utterance ambiguity, called categorization ambiguity, arises
when an utterance that is not ambiguous according to the above classes of utterance
ambiguity, nonetheless can be placed in more than one taxonomic category within the
knowledge hierarchy. That is, an utterance exhibits categorization ambiguity when one
of the components of the semantic interpretation of that utterance can be further specified
in two or more competing ways. For example, consider the question:

User: What does ls do?

Given that the semantic interpreter can interpret 'ls' to mean 'use of the Is program,'
there are two possible meanings of this utterance:

1. What does use of Is cause to happen?
2. What is the use of Is typically intended to cause?

This ambiguity occurs because of the use of the verb 'do.' It is possible to treat this ambi
guity as lexical ambiguity of 'do.' However, each of these senses of 'do' has a common
component; this common component is effectively what 'do' means (in Wilensky's ter
minology [1987b], this is the 'primal content' of the word). Thus, it is better to treat this
example as categorization ambiguity in which the concept representing 'doing' can be
concreted to one of two plausible subconcepts.

There are many concepts that are subject to categorization ambiguity. I will dis
cuss one other example of categorization ambiguity, which is derivative of a taxonomy of
question types. This taxonomy is useful in its own right, and it provides a good example
of how categorization ambiguity arises. In the following sections, I first describe the tax
onomy of question types, then show how it can give rise to categorization ambiguity.

6.2.2.1. A Taxonomy of Question Types

Previous question taxonomies [Lehnert 1977, Ram 1987] have focused on the con
tent of a question as the basis for distinctions between question types. In contrast to this
approach, the following taxonomy is based solely on the type of knowledge being
requested. It is not a complete taxonomy; it does not handle questions that involve deic
tic reference. Nevertheless, it does provide a good example of categorization ambiguity.

There are three types of non-deictic questions a speaker may ask:

79

1. Specification questions
2. Description questions
3. Verification questions

A specification question is one in which the speaker requests that the hearer pro
vide a specification of the concept identified in the question. A specification of a concept

is a concept lying below that concept in the knowledge hierarchy. 2 For example, the

question:

User: How do I delete a file?

is a specification question; its speaker is requesting that the hearer provide a specific

method for deleting a file. A proper response might be:

UC: Userm.

·Here, the use of rm is a specific method for deleting a file (i.e. it lies below the concept

'method for deleting a file' in the knowledge hierarchy). Thus, a specification question is

one where the questioner has restricted the answer to a particular category in the
knowledge hierarchy.

As another example of a specification question, consider the exchanges:

Pat: What kind of doctor is she?
Jerry: A cardiologist.

Pat: What kind of doctor is she?
Jerry: A very good one.

This question is ambiguous, because there are many possible dimensions along which the

type of doctor can be selected (in fact, the ambiguity is categorization ambiguity). How

ever, no matter which interpretation is selected, the question is a specification question; it
asks for a further specification along the chosen dimension.

A description question is one in w};lich the speaker requests that the hearer describe
a particular concept in terms of related concepts in the knowledge base. An example of a

description question is:

User: What is a directory?

2 References to 'the knowledge base' or 'the knowledge hierarchy' in this section mean 'the knowledge base of the

hearer. • This includes facts that the hearer may infer from the knowledge base, whether or not they are explicitly represent

ed there.

80

In this question the user is asking that the hearer describe knowledge relating to direc

tories. An appropriate response might be:

UC: A directory is like a container for files.

Here the description of knowledge about directories is expressed analogically.

Another example of a description question is the following:

Beulah: What's two plus two?

This question is a description question because it is asking for a different description of a

quantity that has already been identified in one way. However, the type of description

typically used for a response to a question such as this one is highly conventional. The

response 'an even number' is correct, but it is typically regarded as a poor description of

the answer.

Note that another way to view description questions is as questions about tokens

rather than about concepts. However, handling description questions in this manner

would require that the semantic analyzer constantly consider whether each piece of the

utterance should be parsed, or should be treated as a token. Thus, it is more efficient to

treat description questions as questions about concepts, where the poser of the question is

unsure about how the concept relates to other concepts.

A verification question is one in which the speaker requests that the hearer indicate

whether a particular concept is a part of the knowledge base. For example:

User: Do I need write permission on a file to delete it?

is a verification question. An appropriate response would be:

uc:No.

Alternative questions are effectively compound verification questions, although

they may presuppose a particular background. For example, the question:

User: Is a process a file or a directory?

is a combination of the questions 'is a process a file?' and 'is a process a directory?' with

the presupposition that a process is one of the two.

81

6.2.2.2. Question Miscategorization

Ambiguity can arise whenever it is possible to miscategorize a question within this

taxonomy. There are two types of miscategorizations of questions that are easily made.

Consider the question:

User: What is a way to delete a file?

When interpreted the natural way, as a specification question, an appropriate response

might be:

uc: Userm.

The response:

uc: It's a method by which one can make an existing file non-existent.

would be inappropriate. The hearer who made this response would have misinterpreted

the question as a description question.

The opposite type of misinterpretation, taking a description question to be a

specification question, can also occur. Consider the question:

User: What is a directory?

The normal interpretation of this question is that it is a description question. A normal

answer to the question might be:

uc: A directory is a place where many files may be kept.

However, if the question is interpreted as a specification question, a response might be:

uc: /usr is a directory.

Each of these types of misinterpretation is an example of categorization ambiguity.

The parent category is the 'question' concept. The ambiguity arises in these examples

because this concept might reasonably be concreted to either the 'specification question'

concept, or to the 'description question' concept.

Although specification questions and description questions in general require dif

ferent kinds of answers, it is possible to use specification to respond to a description

question. For example, the question:

Novice Cardplayer: What is a suit?

82

in the context of card playing might appropriately draw the response:

Sharif: It's one of clubs, diamonds, hearts, or spades.

This type of 'description by example' is often used when one finds it difficult to provide

any other kind of description. Since other types of description are usually more power

ful, they are typically preferred.

The distinction between specification questions and description questions is dif

ferent from Fauconnier's distinction between properties of roles and properties of values

of roles [1985]. Fauconnier points out that certain noun phrases can refer either roles or

to individuals. Consider the question:

Who is the President of the United States?

In the role interpretation, 'the President' means the office of the President; appropriate

responses to the question under this interpretation might be "the head of the executive

branch of the government" or "the leader of the free world." In the role value interpre

tation, 'the President' means the holder of the office; appropriate responses to the ques

tion under this interpretation might include "George Herbert Walker Bush" or "Barb's

hubby" or "That guy over there."

This question demonstrates that the specification/description distinction is orthogo

nal to Fauconnier's role/role value distinction. Regardless of whether 'the President' is

given a role interpretation or a role value interpretation, the question is a description

question. That is, the question demands an answer that describes the term 'the President'

under either interpretation. The possible answers listed above are all descriptions. For a

response to be a specification, it would have to lie below the concept 'the President' in

the knowledge hierarchy. Each of the responses is somehow related to this concept, but

not hierarchically.

6.2.3. Topic Ambiguity

The final type of utterance ambiguity is called topic ambiguity. Topic ambiguity

arises when there are several possible concepts within the representation of the utterance

whose level of specificity might be in question. The level of specificity of a concept is

the depth of that concept within the knowledge hierarchy. For example, the concept

CLOTIDNG is not very specific (it has many descendants), while the concept PLAID

POLYESTER-PANTS is much more specific.

When a hearer builds a representation of the meaning of a speaker's utterance,

each concept within that representation may differ in its level of specificity from the con

cept the speaker used in creating the utterance, or from the level of specificity that the

speaker wants to know about the concept. A speaker often intends that the hearer recog

nize that a particular concept is overspecified or underspecified in this way. I call this

concept the topic of the utterance. For example, the topic of the question:

83

User: How do I delete a file?

is in most contexts the concept 'method for file deletion,' because that concept has been

underspeci.fied relative to the concept the user wants the consultant to express. In asking

this question, the user has expressed a concept that is underspecified relative to the

desired concept, and is asking for a more specific concept lying below 'method for file

deletion' in the knowledge hierarchy. One such concept is the 'rm-method' concept.

I use the term topic to indicate that concept whose level of specificity is of primary

importance to the meaning of the utterance. As such, my use of the term topic is typi

cally the same as the notion of topic found in the topic/comment (or alternatively,

given/new) distinction (See Levinson [1983] for a discussion of these distinctions). The

given of a sentence typically refers to the concept that is currently the discourse topic. It

is usually this topic whose level of specificity is in question. Consider for example the

following sentence, in which italics is used to indicate emphasis and therefore the given

of the sentence:

User: Did Karen delete the file?

Karen is also the topic (in my sense) of the sentence, since it is only the specification of

Karen that is in question.

Topic ambiguity occurs when the hearer has difficulty determining which concepts

the speaker intends to be recognized as being overspecified or underspecified. As an

example of topic ambiguity, consider a question such as:

User: Does mv copy files?

Carberry [1983] points out that questions such as this one are ambiguous. This question

could either be asked as a way to find out what mv does, or as a way to find out how to

copy files (I am ignoring for the moment the categorization ambiguity between doing as

causing, and doing as typical function). When used in the first way, the utterance indi

cates a suspicion on the part of the speaker that mv might copy files. When used in the

second way, the utterance indicates a suspicion on the part of the speaker that a way to

copy files might be mv. Thus, in a verification question such as this one, one of the con

cepts within the representation of the question has been overspecified relative to what the

speaker knows to be true. The ambiguity arises because there is more than one concept

that might play the role of this overspecified question topic.

Topic ambiguity is not restricted to verification questions. Rather, it can arise

whenever the relationship between two concepts is discussed. However, while topic

ambiguity can occur in any utterance, its severity differs from utterance to utterance.

That is, the consequences of selecting the wrong interpretation are graver in some situa

tions than in others. It is most important to correctly analyze topic in the following three

categories of utterance:

84

1. Verification questions
2. Specification questions
3. Negations

While topic ambiguity does not derive from these classes of utterance, it is important to

detect topic ambiguity when an utterance falls into one of these classes.

The occurrence of topic ambiguity in verification questions was discussed above.

The second type of utterance in which it is important to check for topic ambiguity is a

specification question. In a specification question, one of the concepts expressed by the

speaker is underspecified relative to what the speaker wants to know about the concept.

Ambiguity can arise when it is unclear which concept is underspecified in this way. For

example, in a question such as the following one, the concept that initially appears to be

the topic of the question is not the intended topic:

User: How can I delete 300 blocks?

The user with a disk quota problem might ask this question in an attempt to determine

not how to delete files, but rather which files should be deleted. The problematic part of

the processing of this question is to avoid giving an answer like:

uc: Userm.

This answer would only be appropriate if the speaker did not know how to delete files in

general. However, in this context, it is likely that the speaker does know how to delete
files, and is interested in finding out which files she may delete so as to have freed 300

blocks. An appropriate response might then be:

uc: Do you have any core files?

or:

uc: Delete the file gihugic.bak in your home directory.

The claim here is that in this context, the question is not a question about deleting; rather,

it is about a file or files of 300 blocks that might be deleted. Because the concept that is

to be specified is not necessarily the one that the initial interpretation of the question

would indicate, specification questions may exhibit topic ambiguity.

Finally, negations provide a significant source of topic ambiguity. When a speaker

uses a negation, it means that one of the expressed concepts is incorrectly specified rela

tive to what the speaker believes to be true. Determining which concept is the topic of

that negation though can be problematic. Consider the statement:

85

User: I don't want to delete my file with uncompress.

The user might have said this either because she was concerned that use of uncompress

would delete her file, or because she wanted to delete her file with something other than

uncompress. In the first interpretation, the desired result of using uncompress is

incorrectly specified; in the second interpretation, the plan for deleting the file is

incorrectly specified. Note that there are more interpretations for this utterance (/don't

want to do it, Barney does; I want to delete a directory with uncompress; etc.). However,

these two interpretations are adequate for the purpose of examining topic ambiguity.

In summary, verification questions, specification questions, and negations all focus

on a single topic whose level of specificity is in question. Verification questions ask

whether their topic has been correctly overspecified. Specification questions ask for

further specification of their topic. Negations assert that their topic has been incorrectly

specified. Topic ambiguity arises when there is more than one concept that might serve

as the topic in question.

6.3. Goal Ambiguity

Goal ambiguity is ambiguity that occurs when a single action can be a plan for

more than one goal. In processing terms,_ this means that the utterance or goal to be

explained matches more than one planfor in long-term memory. For example, the ques

tion:

User: Do you know how to print a file on the imagen?

can be explained by two planfors, one describing the direct speech act, the other describ

ing the indirect speech act.

It is instructive to analyze goal ambiguity along two separate axes:

1. According to the types of goals inferred
2. According to the relationship between the alternative explanations

First, the inferred goals can be either discourse goals or domain goals. At the discourse

level, one of the most widely-explored forms of goal ambiguity involves direct and

indirect speech acts [Austin 1962, Searle 1969, Allen 1979]. The utterance:

User: I'd like you to tell me how to edit a file.

for example could either be used to indicate a desire (the direct interpretation), or to

request an action (the indirect interpretation). I term this kind of goal ambiguity

direct/indirect ambiguity.

86

Goal ambiguity can also be seen at the level of the domain of discourse. For
example, if the user has the goal of deleting a file, that goal may be explained by the goal
of cleaning up a directory, or of freeing up disk space, or of making the data in the file
inaccessible, or of freeing up the filename, or some combination of these goals. Each of
these explanations can be represented by a distinct planfor, and it is the existence of more
than one such planfor that causes the goal to exhibit goal ambiguity.

The point of making a distinction between dialogue-level and domain-level goal
ambiguity is not to claim that these two kinds of ambiguity require different approaches
for their resolution (as suggested by Allen, Frisch, and Litman [1982] for example). To
the contrary, the point is that even though there is a strong tendency to separate dialogue
phenomena from domain phenomena, nevertheless dialogue-level goal ambiguity and
domain-level goal ambiguity should be handled in the same way for the purposes of
disambiguation. In other words, it is unimportant to distinguish between discourse goals
and domain goals; both types of goals can be handled by a single mechanism.

Goal ambiguity can also be codified into vertical ambiguity and horizontal ambi
guity, according to the relationship between the alternative explanations. Consider the
request:

User: Can you tell me how to change my password?

This utterance matches the planfor that represents ·the fact that asking whether someone
can perform a task is a plan for getting her to do the task. It also matches the more gen
eral planfor that states that a way to request that someone perform a task is to inquire as
to whether a precondition of that task holds. Because the former planfor is derivative of
the latter one, and is therefore a descendant of it in the knowledge hierarchy, I use the
term vertical ambiguity to describe this sort of goal ambiguity.

Horizontal ambiguity is goal ambiguity in which neither of the competing planfors
lies above the other in the knowledge hierarchy. Consider the planfor that indicates that
a way to find out whether a fact holds is to ask whether it holds. This planfor can also be
used to explain the above question; it corresponds to the direct interpretation of the ques
tion. Since it lies neither above nor below the planfors identified in the above discussion
on vertical ambiguity, it is horizontally ambiguous with each of them. These examples
of vertical and horizontal goal ambiguity are shown in Figure 6.1.

It is possible to avoid vertical ambiguity completely through suitable construction
of the planfor knowledge base in long-term memory. However, it would hardly be desir
able to handle the problem of vertical ambiguity in this manner. This is because general
planning knowledge and specific, frequently-used planning knowledge are both impor
tant for efficient processing. Specific knowledge allows frequently used plans to be han
dled quickly, and allows additional information that is not applicable to the more general
plan to be attached directly to the plan to which it is applicable. General planning
knowledge on the other hand provides a way to handle a wide range of less commonly
used plans in a minimum of space. Thus, it is desirable to maintain both kinds of
knowledge in the knowledge base.

Vertical
Ambiguity

D

Goal: Request
Plan: Ask Precondition

Goal: Request
Plan: Ask Ability

Planfor

Horizontal
Ambiguity

D

Goal: Know Ability
Plan: Ask Ability

Figure 6.1. Vertical Goal Ambiguity and Horizontal Goal Ambiguity

6.4. Implementation -- The Detection of Ambiguity

87

The detection of ambiguity is a byproduct of the task of creating a pool of interpre

tations of an utterance large enough to ensure that it contains the correct interpretation.

Detecting ambiguity is therefore not a desirable thing; if a program could always retrieve

only the single candidate that was the correct interpretation, it would never detect ambi

guity, and yet would always correctly explain its input. A program that considered all

available sources of knowledge simultaneously would avoid the detection of ambiguity in

this way. However, in practice, it is not possible to consider all sources of knowledge at

once. Consequently, a goal analysis program must consider one source of knowledge at

a time, notice resolvable ambiguities (so as to ensure that the correct interpretation is

among those under consideration), and resolve the ambiguities based on further sources

of knowledge. The following sections describe how the search for plausible explanations

gives rise to each of the types of ambiguity discussed above, and how PAGAN can deter

mine whether the explanation chains under consideration are compatible or incompatible

88

with one another.

6.4.1. Detecting Lexical, Structural, and Referential Ambiguity

Techniques for the detection of lexical, structural, and referential ambiguities are

well-known and straightforward. The knowledge needed for the detection of lexical

ambiguity can be encoded as multiple entries for the word in the lexicon, as multiple

grammar rules for the word (when a lexicon is not used), or as multiple meaning associa

tions in the semantic interpreter's knowledge base. The knowledge needed for the detec

tion of structural ambiguity is encoded as grammar rules. The knowledge required for

the detection of referential ambiguity can be maintained in the semantic interpreter's

knowledge base, or in a separate knowledge base such as a focus mechanism [Grosz

1978]. Detection of these three kinds of ambiguity is then simply a matter of allowing

the parsing and semantic interpretation algorithms to produce as many outputs as they

find interpretations for the utterance.

6.4.2. Detecting Categorization Ambiguity

Categorization ambiguity can be detected in two ways. Since categorization ambi

guity is caused by the existence of multiple possible competing concretions of a particu

lar category, the natural time to detect it is during semantic interpretation. Consider

again this example of question-type ambiguity:

User: What is a way to delete a file?

Categorization ambiguity arises in this example because the concept that represents the

utterance, QUESTION, might reasonably be concreted either to SPECIFICATION

QUESTION or to DESCRIPTION-QUESTION. Thus, the ambiguity can be introduced by

creating two explanations of the utterance, one of type SPECIFICATION-QUESTION, the

other of type DESCRIPTION-QUESTION. Note that the parent category need not exist

prior to the processing of the utterance, as long as the knowledge representation language

can properly incorporate the new concept into the knowledge hierarchy (see Travis and

Jackson [1988] for a logic-based approach to categorization that will solve this problem

under a closed-world assumption).

In practice though, it is often simpler to introduce categorization ambiguity during

parsing. In this approach, two separate grammar rules are included for the same con

struct. These rules have separate semantic interpretation procedures associated with

them; one procedure produces an interpretation based on the first competing category, the

other produces an interpretation based on the second competing category. A variant on

this approach is to have only one grammar rule whose semantic interpretation procedure

produces both interpretations. The difference between these two methods for treating

categorization ambiguity corresponds roughly to the distinction between a word with

multiple word senses and a word that is vague (See Lytinen [1988] for a discussion of

89

vague words). Often, the easiest way to handle vague words in practice is to provide

them with distinct word senses.

Processing Example

The following trace shows the initial stages of the processing of the utterance:

User: What is a way to delete a file?

The parser detects categorization ambiguity in this example via multiple grammar rules

for the 'what is' construct. It builds two separate interpretations of the utterance, one

based on the concept SPECIFICATION-QUESTION, the other on the concept

DESCRIPTION-QUESTION. These two interpretations are then passed to PAGAN, which

must resolve the ambiguity.

User: What is a way to delete a file?

The first interpretation of this question is that it is a normal wh-question that

should be treated as a specification question.

Applying semantics for WH =>WHAT

Applying semantics for TO-BE=> IS

Applying semantics for TRANSITIVE-VERB => DELETE

Applying semantics for ARTICLE => A

Applying semantics for NOMINAL=> FILE

Applying semantics for NP2 => ARTICLE NOMINAL

Applying semantics forNP => NP2

Applying semantics for TRANSITIVE-VP =>TRANSITIVE-VERB NP

Applying semantics for VP2 => TRANSITIVE-VP

Applying semantics for VP => VP2

Applying semantics for NP => A WAY TO VP

Applying semantics for SENTENCE=> WH TO-BE NP

The second interpretation of the question uses the 'what is' construct. The

question is taken to be a description question.

Applying semantics for TO-BE=> IS

Applying semantics for TRANSITIVE-VERB=> DELETE

Applying semantics for ARTICLE=> A

Applying semantics for NOMINAL=> FILE

Applying semantics for NP2 => ARTICLE NOMINAL

Applying semantics for 1\'P => NP2

Applying semantics for TRANSITIVE-VP =>TRANSITIVE-VERB NP

Applying semantics for VP2 => TRANSITIVE-VP

Applying semantics for VP => VP2

Applying semantics forNP =>A WAY TO VP

Applying semantics for SENTENCE=> WHAT TO-BE NP

90

Notice that the TELL-ACTION in the first interpretation is a specification ques

tion, while in the second interpretation it is a description question. In all other

respects, the two representations have the same structure.

The parser produced the following interpretations:

Interpretation 1 (TELL-ACTION22):

(HAS-GOAL38 (DOMAIN USER)

(RANGE

(TELL-ACTION22 (DOMINATED BY ASK-SPECIFICATION-QUESTION) (ACTOR34 =USER)

(HEARER20 =UNIX-CONSULTANT) (SPEAKER19 =USER)

(UTTERANCE20 =

(SPECIFICATION-QUESTION6 (DOMINATED BY SPECIFICATION-QUESTION)

(WHAT-IS16 =

(THINGl (DOMINATED BY THING)

(PLANFOR49* =

(PLAN74 (DOMINATED BY PLAN)

(PLAN-STEP67 =

(DELETE-ACTION6 (DOMINATED BY DELETE-ACTION)

(CAUSES-OF-DELETE-ACTION9 =

(DELETION12 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECTS= (FILE9 (DOMINATED BY FILE))))))))))))))))

Interpretation 2 (TELL-ACTION23):

(HAS-GOAL39 (DOMAIN USER)

(RANGE

(TELL-ACTION23 (DOMINATED BY ASK-DESCRIPTION-QUESTION) (ACTOR35 =USER)

(HEARER21 =UNIX-CONSULTANT) (SPEAKER20 =USER)

(UTTERANCE21 =

(DESCRIPTION-QUESTIONO (DOMINATED BY DESCRIPTION-QUESTION)

(WHAT-IS17 =
(TIDNG2 (DOMINATED BY THING)

(PLANFORSO* =

(PLAN75 (DOMINATED BY PLAN)

(PLAN-STEP68 =

(DELETE-ACTION7 (DOMINATED BY DELETE-ACTION)

(CAUSES-OF -DELETE-ACTIONlO =

(DELETION13 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT9 = (FILElO (DOMINATED BY FILE))))))))))))))))

91

6.4.3. Detecting Topic Ambiguity

Topic ambiguity is detected during semantic interpretation. Topic ambiguity can
be checked for in any utterance, but must be checked for in at least verification questions,
specification questions, and negations. When one of these concepts is encountered, the
semantic interpreter builds one representation for each of the potential topics of that con
cept. In the absence of information about the intonation of the utterance, the semantic
interpreter can only make intelligent guesses about which concepts might be appropriate
topics. There is a tradeoff here between selecting a large number of potential topics so as
to ensure that the intended topic is included, and selecting as few potential topics as pos
sible so as to reduce the amount of work that will be required to resolve topic ambigui
ties. At the very least, when the apparent topic (that is, the root concept produced by the
semantic interpreter to represent the content of the utterance) is a relation, the semantic
interpreter should select each of the concepts that are connected by that relation as poten

tial topics. For example, suppose the utterance being analyzed is:

User: Does mv delete files?

In this example, the apparent topic is the relation between the mv command and file dele
tion (since the subject is mv and the predicate is file deletion). Therefore, each of these
concepts should be considered as potential topics of the verification question.

Processing Example
This trace demonstrates the detection of topic ambiguity. It shows the interpreta

tions of the utterance:

User: Does rogue3 delete files?

that are given as input to PAGAN. Notice that only two potential topics are suggested by
the semantic interpreter: rogue, and deletion. A more cautious semantic interpretation
algorithm would include the direct object in the set of potential topics, at the expense of
introducing yet another ambiguity.

User: Does rogue delete files?

This trace shows the two interpretations of this utterance produced by the se
mantic interpreter.

The parser produced the following interpretations:

3 Rogue is a game program. One version has the property that it deletes files that the player indicates to contain saved

game states, whether or not those files do contain such saved states.

92

The topic of the utterance in the first interpretation is the range ofWHAT-ISll,

which is ROGUE.

Interpretation 1 (TELL-ACTION13):

(HAS-GOAL15 (DOMAIN USER)

(RANGE

(TELL-ACTION13 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTOR16 =USER) (HEARER10 =UNIX-CONSULTANT) (SPEAKER9 =USER)

(UTTERANCE10 =

(VERIFICATION-QUESTION2 (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-ISll =

(ROGUE

(ACTOR15* =

(DELETE-ACTION9 (DOMINATED BY DELETE-ACTION)

(CAUSES-OF -DELETE-ACTION10 =

(DELETIONll (DOMINATED BY DELETION)

(STATE-CHANGE-OBJECTlO = (FILES2 (DOMINATED BY FILES))))))))))))))

The topic of the utterance in the second interpretation is the range of WHAT.

IS12, which is a DELETE-ACTION. Notice that the only difference between this
representation and the representation shown above is the concept to which the
WHAT -IS of the question is attached.

Interpretation 2 (TELL-ACTION14):

(HAS-GOAL16 (DOMAIN USER)

(RANGE

(TELL-ACTION14 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTOR18 =USER) (HEARERll = Ul\'IX-CONSULTANT) (SPEAKER10 =USER)

(UTTERANCEll =

(VERIFICATION-QUESTION3 (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-IS12 =

(DELETE-ACTION10 (DOMINATED BY DELETE-ACTION) (ACTOR17 =ROGUE)

(CAUSES-OF -DELETE-ACTIONll =

(DELETION12 (DOMINATED BY DELETION)

(STATE-CHANGE-OBJECTll = (FILES3 (DOMINATED BY FILES))))))))))))

6.4.4. Detecting Goal Ambiguity

As described in Chapter 5, planfor explanations for an action are found by looking
upward in the knowledge hierarchy for applicable planfors. Goal ambiguity is detected
when this search process discovers more than one applicable planfor. Both utterance

level and domain-level goal ambiguities are detected in this way. An example of a pair
of planfors that lead to the detection of direct/indirect ambiguity is shown in Figure 6.2.

Planfor Planfor

/
Goal

/
Achieve X

1. Ask hearer's ability
to do X Know whether X

1. Ask hearer whether X
2. Hearer says whether X

2 Hearer does X

Figure 6.2. Planfors That Lead To Goal Ambiguity

This pair of planfors is the source of direct/indirect goal ambiguity. The ambiguity arises
because the first plan step in each plan can match the same utterance. For example, the
question ''Can you tell me how to mail a letter?'' will match the first step of either of these
planfors.

Processing Example

The following trace shows PAGAN's initial processing of the question:

User: Can you tell me how to edit a file?

93

PAGAN detects two goals that might have- led the user to produce the utterance; these

goals reflect the direct and the indirect interpretations of the utterance.

User: Can you tell me how to edit a file?

The parser produces a single interpretation of the user's question.

The parser produced the following interpretation:

Interpretation 1 (TELL-ACTIONS9):

(HAS-GOAL129 (DOMAIN USER)

(RANGE

(TELL-ACTIONS9 (DOMINATED BY ASK-ABILITY-QUESTION) (ACTOR71 =USER)

(HEARERSO =UNIX-CONSULTANT) (SPEAKER45 =USER)

(UTTERANCES2 =

(ABILITY-QUESTION4 (DOMINATED BY ABILITY-QUESTION)

(WHAT-IS38 =

(TELL-ACTIONSS (DOMINATED BY TELL-ACTION)

(ACTOR70 =UNIX-CONSULTANT) (HAS-ABILITY4* = Ul\'TX-f'ONSTJLTANT)

(HEARER49 = USER)

(UTTERANCES!=

(THING18 (DOMINATED BY THING)

(PLANFORlOS* =

(PLAN127 (DOMINATED BY PLAN)

(PLAN-STEP138 =

94

(EDIT -ACTIONS (DOMINATED BY EDIT -ACTION)

(CAUSES-OF-EDIT-ACTION6 =
(EDITING7 (DOMINATED BY EDITING)

(STATE-CHANGE-OBJECT24 = (FILE29 (DOMINATED BY FILE))))))))))))))))))

Before searching for planfor explanations of the utterance, PAGAN first checks

to see that the interpretation of the utterance is plausible, and that it does not

immediately match an expectation.

Attempting to resolve any ambiguities in TELL-ACTION59

Retrieving potential conflicts with TELL-ACTION59 and its plan.

No conflict found.

Attempting to find an explanation for TELL-ACTION59.

Determining whether TELL-ACTION59 is grounded in the preceding dialogue.

TELL-ACTION59 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION59.

In looking for an explanation of the user's utterance, PAGAN finds two appli

cable planfors. The first, ASK-POLITELY-PLANFOR, states that a way to ask a

hearer to do something is to ask the hearer's ability to do it. This planfor

represents the indirect interpretation of the utterance.

Found ASK-POLITELY-PLANFOR as an explanation for TELL-ACTION59.

Synopsis:
Goal: request hearer do something;
Step 1: Ask hearer's ability to do it.

Inferred goal is TELL-ACTION61.

The second applicable planfor, PLANFOR2, states that in order to know wheth

er something is true, one should ask whether it is true. This planfor represents

the direct interpretation of the utterance.

Found PLANFOR2 as an explanation for TELL-ACTION59.

Synopsis:
Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.
Inferred goal is KNOWING-WHETHER25.

Before continuing, PAGAN must determine whether these two interpretations

are compatible with one another. They are not, so PAGAN marks them as such.

If one of the interpretations is subsequently selected, the other will be rejected

(and vice versa).

Determining whether ASK-POLITELY-PLANFOR and PLANFOR2 are incompatible.

The explanations are incompatible.

Explanation found for TELL-ACTION59.

..

95

6.4.5. Determining Whether Two Interpretations are Incompatible

When multiple explanation chains for an utterance that are mutually compatible

are encountered, the correct action for PAGAN is to accept the existence of multiple

explanations of the utterance. That is, each of the explanation chains should be part of

the final explanation of the utterance. It is by allowing more than one explanation chain

to apply to a single utterance in this way that the algorithm generates explanations that

satisfy the breadth completeness criterion. The philosophy here is that if all reasonable

explanations for an utterance are first proposed, then all those that are incorrect are

thrown out, the correct, complete explanation of the utterance will remain.

Given two or more explanations of an utterance, a goal analyzer must have the

ability to determine whether the explanations are compatible with one another, or

whether one of the interpretations must be selected as the correct one at the expense of

the others. Goal ambiguity is treated differently from other types of ambiguity in this

regard. When the ambiguity is sentence or utterance ambiguity, the alternatives are

always considered to be mutually incompatible. While this approach fails to illuminate

some subtleties of language (such as inferring both interpretations of a pun), it handles

most phenomena encountered in straightforward cooperative dialogue quite well.

When the ambiguity is goal ambiguity, the principle of horizontal completeness

provides a good heuristic for determining when the explanations are compatible. Those

explanations that explain exactly the same components of the utterance are taken to be

incompatible; those that explain different portions of the utterance are compatible. That

is, if the two potential planfor explanations are attached to the same concept in the

knowledge hierarchy, or one is attached to a concept that is the ancestor of the concept

the other planfor is attached to, then the two explanations are incompatible. Otherwise,

the two explanations are explaining different portions of the utterance, and so are compa

tible. For example, the planfors shown in Figure 6.2 are incompatible, because the first

steps of their plans are hierarchically related.

6.5. Summary

There are three broad classes of ambiguity that arise in dialogue. Sentence ambi

guity occurs when a sentence is ambiguous outside of any particular context. Lexical

ambiguity and structural ambiguity are both sentence ambiguities. Utterance ambiguity

occurs when the use of a sentence is ambiguous in a particular context. There are three

types of utterance ambiguity: referential ambiguity, categorization ambiguity (ambiguity

arising from the existence of multiple plausible subcategories for a concept in a particular

category), and topic ambiguity (ambiguity arising when there is more than one potential

primary focus of an utterance). Finally, goal ambiguity occurs when a particular action

(such as an utterance), while it is unambiguous relative to the two preceding categories,

nevertheless can be used for more than one purpose.

96

While these types of ambiguity may sometimes be handled by other mechanisms,

there are also times when each of them will have to be addressed by the goal analyzer.

The next chapter shows how a single algorithm can be used to handle each of these types

of ambiguity during goal analysis.

Chapter 7

Handling Ambiguity

When ambiguity is detected and it cannot be resolved by other components, it must

be addressed by PAGAN. This chapter describes the algorithm PAGAN uses to handle

ambiguity. It is important to note that no matter what the source of an ambiguity, the

same algorithm is used to handle it.

There are two ways to handle ambiguity:

I. Resolve the ambiguity, and continue processing
2. Ignore the ambiguity, processing each alternative individually

Ambiguity resolution can be achieved in either of two ways:

1. By rejecting all the incorrect interpretations, leaving the correct one
2. By selecting the correct interpretation outright

Rejection of an interpretation is done by detecting a conflict between the interpretation

and some other knowledge held by the system. Such a conflict is called a knowledge

conflict. Selection of an interpretation is done either by matching the interpretation to an
expectation (as described in Chapter 5), or by naturally preferring that interpretation over

others.

A tree showing a taxonomy of these approaches to handling ambiguity is shown in

Figure 7.1. The first part of this chapter is organized around a pre-order traversal of this

tree. After this discussion of how to handle ambiguity, I comment upon what the system

as a whole should do if it cannot resolve an ambiguity. Finally, I discuss how the tech

niques described in this chapter can be implemented.

97

98

Rejection of
Incorrect Interpretations

l
Knowledge Conflict

Detection and Resolution

Ambiguity
Resolution

Expectation
Matching

Ambiguity
Handling

Selection of
Correct Interpretation

Disregard of
Ambiguity

Intrinsic
Preference

Figure 7 .1. A Taxonomy of Methods for Handling Ambiguity

7.1. Ambiguity Resolution

The best approach to handling ambiguity is to resolve the ambiguity. This means

that one of the interpretations is taken to be correct, at the expense of the other interpreta

tions. Ambiguities arise because sentences themselves do not contain enough informa

tion to reveal the intentions behind their use. Therefore, to resolve ambiguity, knowledge

from sources other than the sentence in question must be used.

There are two rules for determining how to resolve an ambiguity. These rules are

valid not just for goal analysis, but for any interpretation task that encounters multiple

interpretations. The first of these rules concerns how an explanation relates to the

system's knowledge of the world. The second rule concerns how an explanation relates

to the context in which the action to be explained was performed:

Rule 1: Reject an interpretation if that interpretation is in conflict with some

belief of the system, and if confidence in the interpretation is less than

confidence in the belief.

Rule 2: Select an interpretation if context indicates there is a reason to prefer

it over other interpretations.

In the following subsections, I describe these rules in more detail. First, I discuss how a

contradiction between an explanation and a system belief can lead to rejection of the

explanation. Following this discussion of rejection of an interpretation, I discuss selec

tion of an interpretation as a way to resolve ambiguity. In the next section, I present

disregard of ambiguity as an alternative to knowledge-based ambiguity resolution.

-

99

7.1.1. Rejecting an Interpretation

Rejection of an interpretation of an utterance is the first of two methods for resolv

ing an ambiguity. Rejection of an interpretation hinges on whether the knowledge con

tained in or inferred from the interpretation conflicts with beliefs held by the system.

Such conflicts are called knowledge conflicts. If a knowledge conflict is found, and if the

mechanism that makes inferences about the interpretation works properly, then one of

two conditions holds: either the interpretation is incorrect; or the system's belief is

incorrect. If the system determines that the interpretation of the utterance is incorrect,

then. the interpretation can be rejected as a plausible explanation of the utterance. Reject

ing the interpretation will either resolve the ambiguity, or at the very least reduce the

number of interpretations under consideration. On the other hand, if the system decides

that the interpretation of the utterance is more likely to be correct than the conflicting

belief, then the belief will be abandoned.

If rejection is to be used to resolve ambiguity, two new capabilities are required.

First, PAGAN needs the ability to detect situations in which an explanation is in conflict

with a previously held belief. Secondly, PAGAN needs a method for weighing the

strength of its confidence in the explanation and in the belief. In the following subsec

tions, I first show how a belief held by a model of the user can conflict with a belief about

the user inferred from an explanation of an utterance. I then discuss how such conflicts

can be detected. Finally, I describe how these conflicts can be resolved, and how such

resolution can lead to the rejection of an interpretation of an utterance.

7.1.1.1. The User Model as Source of Knowledge Conflicts

The main type of knowledge that may conflict with knowledge gleaned from an

utterance is knowledge of the speaker of the utterance. Such knowledge is accessed by

referring to a user modeling component, such as KNOME [Chin, 1988]. The user model

is a component of a dialogue system that maintains long-term knowledge about the other

dialogue participants.1 Such knowledge may include for example knowledge of the

user's knowledge, knowledge of the user's beliefs, knowledge of the user's goals, and

knowledge of the user's capabilities. Any of these types of knowledge maintained by the

user model may conflict with a portion of an explanation of an utterance. The ways in

which a portion of an explanation may conflict with such knowledge is the subject of the

following sections.

1 The meaning of 'long-term' here is relative to the duration of an uuerance; I do not mean to imply that this knowledge

is necessarily retained between dialogues with the same user.

100

7.1.1.2. Sources of Knowledge Conflicts Within an Explanation

An explanation of an utterance has many components, any one of which might be

the source of a knowledge conflict. It is useful though to divide the sources of conflicts

within an explanation into three categories:

1. Conflicts with the inferred goal
2. Conflicts with the inferred plan
3. Conflicts with the explanation as a whole

The first category encompasses those components of an explanation most closely associ

ated with the goal of the planfor; the second category includes those components most

closely associated with one of the steps of the plan; and the third category covers the

explanation as a whole. Of course, no component of an explanation will be exclusively

in the domain of the goal or of the plan of the explanation; rather, each component is

connected to both the plan and to the goal by some chain of relations. For example, the

portion of an explanation of a question that represents the concept 'how to delete a file'

may be connected to both the goal of the planfor ('speaker wants to know how to delete a

file'), to the first step of the plan ('speaker asks how to delete a file'), and to the second

step of the plan ('speaker is told how to delete a file'). Although it may be impossible to

associate a concept with only one of the categories listed above, it is nevertheless useful

to assign each concept to one or more of the categories, and to use the categories to study

knowledge conflicts.

I have found six kinds of knowledge conflict that can lead to the resolution of

ambiguity:

1. Goal conflicts
2. Goal obtains
3. Knowledge is deficient
4. Unable to perform action
5. Consequent conflicts
6. Better plan known

These types of knowledge conflict are discussed in the following sections.

7.1.1.2.1. Conflicts with the Goal of an Explanation

The goal of an explanation may conflict with the model of the user in two ways:

1. The goal itself conflicts
2. The knowledge that would be required to hold the goal conflicts

101

The goal of an explanation conflicts with the model of the user when the user model indi

cates that the user does not hold that goal. There are two reasons that the user model

might indicate such a conflict:

1. The user would not want the goal state to hold
2. The user already believes the goal to obtain

The first reason that the user model might indicate a conflict with the goal of an explana

tion is that it believes that the speaker would not want that goal state to hold:

User: Will an infinite loop crash UNIX?

One interpretation of this question is that the speaker wants to crash UNIX. If the user

model held the quite reasonable belief that the user would not want to crash the system,

that belief would conflict with the goal of this interpretation. The conflict could be used

to resolve the apparent ambiguity in the question. Of course, it is unlikely that the goal

of not crashing the system would be part of a user model. It is more likely that the user

model would contain some sort of preservation theme that would give rise to goals such

as this.

The second reason that the user model might indicate a conflict with the goal of an

explanation as a whole is that it believes that the speaker already believes the goal to

obtain. This rule is derivative of Allen's 'Effects True' heuristic for rating an explana

tion [1979]. Consider the question:

User: Do you know how to copy a file to a Sun?

When UC is playing the role of consultant to a novice UNIX user, the user model will

indicate that the user knows that uc does in fact have that information available. Thus,

the direct interpretation of this question (that it is a question about UC's knowledge state)

will conflict with this belief of the user model, and will lead to a resolution of the ambi

guity. If on the other hand the user model indicates that it believes that the user may

have some doubt as to the system's capabilities (such as when being taught new informa

tion by an expert), the direct interpretation of this question will not conflict in this way.

In this case though, the user model may assume that the speaker (i.e. the person adding

knowledge to UC) already knows how to copy a file to a Sun. If the indirect interpreta

tion of the utterance (that it is a request to be told how to copy a file) is under considera

tion, it will conflict with this belief of the user model. This conflict will allow the ambi

guity to be resolved.

A goal may also give rise to a knowledge conflict when the user model does not

believe that the speaker has all the knowledge that would be required to hold the goal.

For example, suppose a novice UNIX user asks:

User: How can I delete a file?

102

One explanation of this utterance includes the goal of freeing the disk blocks associated

with the file. However, the user model should know that a novice is unlikely even to

understand the concept of disk blocks, much less want to know how to manipulate them.

This interpretation then will lead to a knowledge conflict with the user model that can be

used to reject the interpretation. Note that the topic of a description question must not be

ruled out in this way, since such a question does not presuppose that the speaker under

stands the referenced concept

Conversely, an explanation of an utterance may imply that the speaker does not

possess certain knowledge, where the user model indicates that the speaker does have

that knowledge:

User: What is a good text processor on this system?

This question exhibits categorization ambiguity. One explanation of the question is that

the speaker wants to know what it means to be a good text processor on this system. This

interpretation takes part in a knowledge conflict if the user model indicates that the

speaker does know the meaning of the concept about which she has inquired.

7.1.1.2.2. Conflicts with the Plan of an Explanation

Because plans are usually composed of actions taken by one or more agents,

conflicts may arise from two aspects of a plan:

1. The abilities of the agent(s)
2. The consequences of the action(s)

First, a plan may require that an agent perform a particular action, while the user model

indicates that the speaker believes that the agent cannot perform that action. This rule is

derivative of Allen's 'Preconditions False' heuristic for rating an explanation [1979].

Consider the question:

User: Do you know how to remove my file named dead.letter?

Suppose that PAGAN is considering the interpretation that the user wants uc to delete the

file. If the user model believes that the user is aware that UC is only able to give advice

and cannot itself take action in the UNIX domain, then there is a knowledge conflict

between the plan portion of the explanation and the user model's knowledge. The

conflict will be useful in rejecting this interpretation of the question.

Secondly, one of the consequences of an action that is a part of the plan may give

rise to a knowledge conflict. Three criteria must hold true for such a conflict to arise:

i
I

103

1. The speaker must believe that the consequent follows
2. The speaker must desire that the consequent not hold
3. The consequent must not be the topic of conversation

For example, suppose the user asks:

User: Do you know how to delete a file?

One interpretation of this utterance is the literal one, which says that the user is actually

questioning UC's abilities. One of the effects of this plan is that the hearer may be

offended if the answer to the question is obviously affirmative. If the user model indi

cates that the user knows that such a question might be taken as offensive, and indicates

furthermore that the user does not desire to offend uc, then a knowledge conflict stems

from this plan.

The third criterion, that the undesirable effect not be the topic of conversation, is

needed to allow proper processing of utterances that ask how to avoid undesirable

effects:

User: How can I run uncompress on my file without deleting it?

Here, the speaker is asking how the uncompress plan can be altered so that it does not

delete the file in question. It would be incorrect in this example to reject the interpreta

tion that the speaker wants to use the uncompress plan because that plan has an undesired

effect.

7.1.1.2.3. Conflicts with the Entirety of an Explanation

The conflicts I have discussed so far have been conflicts between the user model

and portions of the explanation of the utterance. It is also possible that a belief held by

the user model may conflict with the entirety of the explanation. Consider the question:

User: Does rogue delete files?

This question exhibits topic ambiguity. One of its interpretations is that the user wants to

know how to delete files. However, if the user model indicates that the speaker believes

both that rm is the program specifically designed to delete files, and that rogue is

designed as a game, then a conflict arises between this fact and the interpretation that the

speaker wants to know another way to delete files. Notice that this is not merely a

conflict with the goal of the explanation. If the speaker only knew a very bad plan for

deleting files, then it would be perfectly reasonable for her to seek a better method. It is

only the fact that a better plan for the goal is .already known by the speaker that causes

the conflict. Thus, the conflict is with the explanation as a whole. This points out an

advantage of the planfor representation; statements need not be restricted to plans or

goals alone; they may be predicated about the planfor as a whole.

104

7.1.1.3. Resolving Knowledge Conflicts

Knowledge conflicts are resolved by selecting that element of the conflict in which

the most confidence is held, and rejecting the other. If the selected element is derived

from the user model, the conflicting explanation is rejected, possibly resolving the ambi

guity. If however the selected element is derived from the interpretation of the utterance,

the user model is deemed to have been incorrect. In this case, not only must the user

model be updated to reflect the changed belief, but another method must be sought to

resolve the ambiguity. If neither element of the conflict inspires significantly more

confidence than its competitor, then nothing significant is learned from the conflict, and

another method must be used to resolve the ambiguity.

7.1.2. Selecting an Interpretation

If there are several explanations of an utterance, and none is in conflict with the

system's beliefs, it may still be possible to select among them. If there is some reason to

prefer one of the explanations over the others, then that explanation may be selected as

the correct explanation. There are two reasons that one explanation might be preferred

over another:

1. Expectation matching
2. Intrinsic preference

Knowledge of previous dialogue is accessed by PAGAN through the intentional

model of the dialogue it builds and maintains. Chapter 5 discussed expectation matching

as a way to build explanations that meet the grounding criterion. Expectation matching

is also useful as a way to resolve ambiguities, by indicating that an interpretation that

matches an expectation should be selected as the correct interpretation. To see how this

kind of selection of a competing planfor explanation can be used to resolve an ambiguity,

suppose that PAGAN is analyzing the user's utterance in this exchange:

UC: Is the file in your home directory?
User: It's in /tmp.

If the semantic interpreter is unable to determine whether 'it' refers to the file or the

home directory, the response will exhibit utterance ambiguity (because each of the

semantic interpretations is a candidate for goal analysis). The grounding of the response

in UC's goal of knowing the location of the file will resolve this ambiguity.

Secondly, preference can be given to an interpretation if the goals of that interpre

tation are more likely to hold than those of competing interpretations. For example, a

person is more likely to want to delete a file than a directory. If PAGAN is trying to

decide between a file and a directory as the referent of'it' in the question:

105

User: How can I delete it?

then this knowledge can be used to select the file as the referent.

7 .2. Disregard of Ambiguity

The alternative to resolving ambiguity is ignoring it. There are three cases in

which ignoring ambiguity can lead to acceptable results:

1. When the ambiguity can be resolved at a later point
2. When the system does not require a single interpretation
3. When the ambiguity is real ambiguity

The first way that disregard of ambiguity can be useful is as a delaying tactic. By carry

ing forward multiple interpretations of an input, PAGAN may eventually be able to apply

the principles discussed above to resolve the ambiguity. For example, consider the

sequence:

User: I want more disk space.
User: Does mv delete files?

This last question exhibits topic ambiguity; it can either be a question about what mv

does, or a question about how to delete files. Knowing only this, the ambiguity cannot be
resolved. However, if the ambiguity is temporarily ignored and both interpretations are

pursued, the latter interpretation will ultimately be selected. This is because deleting files

is a way to increase disk space, and therefore matches a goal introduced by the preceding

statement. The Lucy system [Rich et al., 1987] carries this type of delay a step further. In

Lucy. rival explanations of an utterance are not even constructed until there is some hope

of resolving the ambiguity.

Secondly, in some cases, ambiguity may be ignored altogether. When UC can

easily address the goal of each competing interpretation, then such disregard is accept

able. For example, suppose that PAGAN is unable to determine whether:

User: Do you know where the lisp interpreter is located?

is intended as a direct or an indirect request. Since both interpretations can be addressed

by a response such as:

UC: Yes, it's in /usr/ucb/lisp.

it is possible in this example for PAGAN to ignore the ambiguity. Doing so of course

shifts the burden of coping with the ambiguity onto the planner and the expression

mechanism, which must engineer a response such as this one.

106

Finally, in rare cases, a perceived ambiguity is a real ambiguity. In such cases,

even a human observer cannot decide which of the interpretations should be adopted. If

human performance is taken as a limit on the performance of a computer program, then

disregard of real ambiguity by PAGAN is acceptable.

7 .3. Unresolved Ambiguity

If ambiguity remains after execution of this algorithm, PAGAN can do nothing

more to resolve it; it is up to the rest of the system to handle the ambiguity. There are

two possible causes of this situation:

1. The ambiguity is real ambiguity that the system must confront
2. The ambiguity is resolvable ambiguity that PAGAN failed to resolve

The first possibility is that the unresolved ambiguity is a real ambiguity that the system

must confront. That is, the speaker truly failed to make her intentions clear. The second

possibility is that there were sufficient clues provided by the speaker to disambiguate the

utterance, but for some reason PAG~N was unable to do so. Since without further

knowledge sources there is no way for the system to distinguish between these two possi

bilities, it should assume that the ambiguity is real. The user will be quick to point out

the error if the ambiguity was resolvable.

There are three principle tactics that a system may adopt when confronted with

unresolved ambiguity:

1. Query the user
2. Arbitrarily select one of the interpretations
3. Finesse the ambiguity

The first option the system has is to ask the user which interpretation was intended:

User: How can I save my program?
uc: Are you trying to save the source code or the executable code?

Here, PAGAN has not been able to resolve the lexical ambiguity in the word 'program.'

The system has chosen to deal with the ambiguity by explicitly asking the speaker which

interpretation was intended.

The second option at the system's disposal is to select one of the interpretations

arbitrarily, and treat it as if it were the correct one:

User: How can I see my file?
uc: Use 'more.'

....

107

In this example, 'seeing' a file could mean either viewing it on a screen, or having a

print-out of the file to peruse. Lacking any simple way to determine which outcome the

speaker desired, the system has simply chosen one of the interpretations arbitrarily, and

told the user how to achieve it. The expectation is that if the choice was incorrect, the

user will alert the system to that fact.

Finally, the system can finesse the ambiguity by addressing each of the goals, or by

addressing none of them:

User: Can you tell me how to delete a directory?
uc: Yes, you use rmdir.

User: How can I copy cs374118's program?
uc: I can't tell you how to steal another student's work.

In the first example, the speaker has made either a direct or an indirect request. The sys

tem is able to proceed smoothly without knowing which of the interpretations was

intended, by responding with an utterance that satisfies both goals. In the second exam

ple, the ambiguity introduced by the word 'program' is ignored altogether; the system

rejects both goals as inappropriate for this user, and informs the user of its rejection.

7.4. Implementation

The bulk of the processing power used in handling ambiguity is directed toward

the detection and resolution of knowledge conflicts. The next section discusses how this

is achieved. The following sections cover selection of an interpretation, and disregard of

ambiguity.

7.4.1. Detecting and Resolving Knowledge Conflicts

The detection of a knowledge conflict is a three-step process:

1. Selection of a knowledge conflict type
2. Selection of a component of the explanation
3. Querying of the user model

The first step in detecting a knowledge conflict is to select one of the knowledge conflict

types presented in the preceding sections:

108

1. Goal conflicts
2. Goal obtains
3. Knowledge is deficient
4. Unable to perform action
5. Consequent conflicts
6. Better plan known

Once a knowledge conflict type has been chosen, the second step is to select some com

ponent of the explanation to examine for this type of conflict. To reduce the number of

queries to the user model, only those components of the explanation that are appropriate

for the chosen knowledge conflict type should be considered. Delving deep within the

network that represents the explanation should be avoided for the same reason. There

fore, the following rules are used in selecting components of the explanation to be

checked for knowledge conflicts. Each potential conflict type is examined every time a

knowledge conflict is sought:

Goal conflicts: Select only the motivating goal.
Goal obtains: Select only the motivating goal.

Knowledge is deficient: Select only components of the goal that relate directly to

the domain of discourse, and that are within one relation of the motivating goal.

This rule handles most cases where knowledge deficiency is applicable, without

increasing the computational load significantly.
Unable to perform action: Select only top-level plan steps that are actions.

Consequent conflicts: Select only major effects of plan steps that are events.

Better plan known: Select only the planfor used to generate the explanation.

Once the knowledge conflict type and explanation component have been selected, the

final step in knowledge conflict detection is to query the user model as to whether it holds

any beliefs about the user that conflict with the selected component of the explanation in

the suggested way. The user model must not only select the beliefs it holds that conflict

with the selected component, but must also rate its confidence in those beliefs.

Currently, a simplified version of Chin's KNOME user model [1988], adapted to PAGAN's

requirements, is used for this task. It treats the concept provided by PAGAN as an asser

tion, and determines whether it is likely that the user believes that assertion. Note that a

truth maintenance system [Doyle 1979] could be used to mediate between PAGAN and

the user model in knowledge conflicts. However, the selection of beliefs to reject when a

conflict arises must be directed by PAGAN and the user model, not by the truth mainte

nance system. PAGAN does not currently use such a system.

A simple way to determine how confident PAGAN should be about a particular

interpretation of an utterance is to heuristically map from an explanation to a rating

drawn from the set {VERY-SURE, SURE, NOT-SURE}. The following heuristics are used

to perform the mapping:

Heuristic 1: If the explanation matches an expectation, then the system is

VERY-SURE of the interpretation.

Heuristic 2: If the explanation is the only one available, then the system is

SURE of the interpretation.

Heuristic 3: If the explanation is one of many that the system is considering,

then the system is NOT-SURE of the interpretation.

109

While this set of certainty levels and these heuristics are simplistic, they do nevertheless

provide a reasonable first approach to the problem of assigning confidence levels to

explanations.

Processing Example

The following trace shows PAGAN's processing of the question:

User: Will an infinite loop crash UNIX?

This utterance exhibits topic ambiguity; the user may want to know the effects of an

infinite loop, or how to crash UNIX. The ambiguity is resolved through a knowledge

conflict with the user model.

User: Will an infinite loop crash UNIX?

The parser produced the following interpretations:

Two interpretations of the user's utterance are produced by the semantic inter

preter. The topic of the first (the value ofWHAT-ISSS) is an infinite loop, while

the topic of the second (the value ofWHAT-IS56) is a UNIX crash.

Interpretation 1 (TELL-ACTION77):
(HAS-GOAL172 (DOMAIN USER)
(RANGE
(TELL-ACTION77 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTOR92 =USER) (HEARER66 =UNIX-CONSULTANT) (SPEAKER61 =USER)

(UTTERANCE68 =
(VERIFICATION-QUESTION18 (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-ISSS =
(INFIJ\'ITE-LOOP13 (DOMINATED BY INFIJ\'ITE-LOOP12)

(DOMINATED BY ANIMATE)
(ACTOR91* =

(CRASH-ACTION6 (DOMINATED BY CRASH-ACTION)

(CAUSES-OF-CRASH-ACTION9 =
(CRASH12 (DOMINATED BY CRASH)
(STATE-CHANGE-OBJECT -OF-CRASH6 = UJ\'IX))))))))))))

110

Interpretation 2 (TELL-ACTION78):

(HAS-GOAL173 (DOMAIN USER)

(RANGE

(TELL-ACTION78 (DOMINATED BY ASK-VERIFICATIOI"-QUESTION)

(ACTOR94 = USER) (HEARER67 = UNIX-CONSULT ANT) (SPEAKER62 = USER)

(UTTERANCE69 =

(VERIFICATION-QUESTION19 (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-ISS6 =

(CRASH-ACTION7 (DOMINATED BY CRASH-ACTION)

(ACTOR93 =

(INFINITE-LOOPlS (DOMINATED BY INFIJ\'ITE-LOOP14)

(DOMINATED BY Al\'IMATE)))

(CAUSES-OF-CRASH-ACTIONlO =

(CRASH13 (DOMINATED BY CRASH)

(STATE-CHANGE-OBJECT-OF-CRASH7 =UNIX))))))))))

The ambiguity cannot be resolved at this point.

Attempting to resolve any ambiguities in TELL-ACTION78

Retrieving potential conflicts with TELL-ACTION78 and its plan.

No conflict found.

Attempting to resolve any ambiguities in TELL-ACTION77

Retrieving potential conflicts with TELL-ACTION77 and its plan.

No conflict found.

PAGAN searches for an explanation for each of the interpretations. The same

planfor is found to explain them both. This planfor states that a plan for know

ing whether a condition holds is to ask whether it holds, and to receive an

answer.

Attempting to find an explanation for TELL-ACTION77.

Determining whether TELL-ACTION77 is grounded in the preceding dialogue.

TELL-ACTION77 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION77.

Found PLANFOR138 as an explanation for TELL-ACTION77.

Synopsis:

Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.

Inferred goal is KNOWING-WHETHER28.

Explanation found for TELL-ACTION77.

Attempting to find an explanation for TELL-ACTION78.

Determining whether TELL-ACTION78 is grounded in the preceding dialogue.

TELL-ACTION78 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION78.

Found PLANFOR138 as an explanation for TELL-ACTION78.

Synopsis:
Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.
Inferred goal is KNOWING-WHETHER29.

Explanation found for TELL-ACTION78.

Again, the ambiguity cannot be resolved.

Attempting to resolve any ambiguities in KNOWING-WHETHER29

Retrieving potential conflicts with KNOWING-WHETHER29 and its plan.

No conflict found.

Attempting to resolve any ambiguities in KNOWING-WHETHER28

Retrieving potential conflicts with KNOWING-WHETHER28 and its plan.

No conflict found.

The parallel development of the two explanations continues with the use of a

single planfor applicable to both. This planfor states that a plan for the goal

of knowing something is to know that it has a particular value.

Attempting to find an explanation for KNOWING-WHETHER28.

Determining whether KNOWING-WHETHER28 is grounded in the preceding dialogue.

KNOWING-WHETHER28 was not grounded in the preceding dialogue.

Trying to find planfor explanations for KNOWING-WHETHER28.

Found PLANFOR137 as an explanation for KNOWING-WHETHER28.

Synopsis:
Goal: Know f(X);
Step 1: Know that f(X) = Y

Inferred goal is KNOWING-THAT33.

Explanation found for KNOWING-WHETHER28.

Attempting to find an explanation for KNOWING-WHETHER29.

Determining whether KNOWING-WHETHER29 is grounded in the preceding dialogue.

KNOWING-WHETHER29 was not grounded in the preceding dialogue.

111

112

Trying to find planfor explanations for KNOWING-WHETHER29.

Found PLANFOR137 as an explanation for KNOWING-WHETHER29.

Synopsis:
Goal: Know f(X);
Step 1: Know that f(X) = Y

Inferred goal is KNOWING-THAT34.

Explanation found for KNOWING-WHETHER29.

The ambiguity still cannot be resolved.

Attempting to resolve any ambiguities in KNOWING-THAT34

Retrieving potential conflicts with KNOWING-THAT34 and its plan.

No conflict found.

Attempting to resolve any ambiguities in KNOWING-THAT33

Retrieving potential conflicts with KNOWING-THAT33 and its plan.

No conflict found.

PAGAN tries to find an explanation for the goal of knowing the outcome of an

infinite loop. No such explanation is found.

Attempting to find an explanation for KNOWING-THAT33.

Determining whether KNOWING-THAT33 is grounded in the preceding dialogue.

KNOWING-THAT33 was not grounded in the preceding dialogue.

Trying to find planfor explanations for KNOWING-THAT33.

No planfor explanations found for KNOWING-THAT33.

Determining whether KNOWING-THAT33 is explained by a theme.

KNOWING-THAT33 was not explained by a theme.

No explanation found for KNOWING-THAT33.

Exploring the other option, PAGAN infers that the user may want to know how

to crash UNIX in order to actually crash it.

Attempting to find an explanation for KNOWING-THAT34.

Determining whether KNOWING-THAT34 is grounded in the preceding dialogue.

KNOWING-THAT34 was not grounded in the preceding dialogue.

Trying to find planfor explanations for KNOWING-THAT34.

Found PLANFOR144 as an explanation for KNOWING-THAT34.

Synopsis:
Goal: Achieve X;
Step 1: Know how to x;
Step 2: Do X

Inferred goal is CRASH1S.

Explanation found for KNOWING-THAT34.

PAGAN now examines the goal of crashing UNIX. This goal is found to
conflict with the goals that the user model believes the user holds. Therefore,
this interpretation is rejected. The correct interpretation, that the user wants
to know the outcome of an infinite loop, remains.

Attempting to resolve any ambiguities in CRASH15

Retrieving potential conflicts with CRASHlS and its plan.
Conflict found: inferred goal conflicts with user's goals.
Rejecting CRASH15 as an explanation of KNOWING-THAT34.

7.4.2. Selecting an Interpretation

113

Expectation matching is performed by asserting that the event to be explained lies

below the expected event in the knowledge hierarchy. If no error arises in making this

assertion, the event to be explained successfully matches the expectation, and therefore

the interpretation of which it is a part is selected as the correct one. This expectation

matching process was described in detail in the implementation section of Chapter 5.

Intrinsic preference of one interpretation over another is implemented by associat
ing a likelihood rating with each goal type. When two explanations of an utterance are in

conflict with one another, the ratings of their goals are compared. If one rating exceeds

the other by a predetermined amount, the corresponding explanation is taken as the
correct one. However, because intrinsic preference does not take the particular cir

cumstances of an utterance into account, the usefulness of this method of ambiguity reso

lution is limited to highly constrained domains. Because of this constraint, PAGAN does

not currently use intrinsic preference in processing questions about UNIX.

Processing Example

The following trace shows PAGAN's processing of the user's utterance in the

exchange:

UC: Is the file in your directory?
User: It is in /tmp.

Of note in this trace is the detection of the referential ambiguity of the word 'it,' and its

subsequent resolution via grounding in UC's utterance.

uc: Is the file in your directory?

114

User: It is in /tmp.

The parser produced the following interpretations:

The semantic interpreter is unable to determine whether 'it' refers to the file or

the directory, so it produces two interpretations of the user's statement.

Interpretation 1 (TELL-ACTION25);

(HAS-GOAL45 (DOMAIN USER)

(RANGE

(TELL-ACTION25 (DOMINATED BY MAKE-STATEMENT) (ACTOR31 =USER)

(HEARER22 =UNIX-CONSULTANT) (SPEAKER21 =USER)

(UTTERANCE22 =

(LOCATION-OF6 (DOMINATED BY LOCATION-OF)

(LOCATED6 = (FILE16 (DOMINATED BY FILE))) (LOCATION6 = SLASH-TMP))))))

Interpretation 2 (TELL-ACTION26);

(HAS-GOAL46 (DOMAIN USER)

(RANGE

(TELL-ACTION26 (DOMINATED BY MAKE-STATEMEJ\'T) (ACTOR32 =USER)

(HEARER23 =UNIX-CONSULTANT) (SPEAKER22 =USER)

(UTTERANCE23 =

(LOCATION-OF7 (DOMINATED BY LOCATION-OF)

(LOCATED7 = (DIRECTORY4 (DOMINATED BY DIRECTORY)))

(LOCATION7 = SLASH-TMP))))))

No conflict is found with either interpretation, so PAGAN tries to find an expla

nation for each of them.

Attempting to resolve any ambiguities in TELL-ACTION26

Retrieving potential conflicts with TELL-ACTION26 and its plan.

No conflict found.

Attempting to resolve any ambiguities in TELL-ACTION25

Retrieving potential conflicts with TELL-ACTION25 and its plan.

No conflict found.

Determining whether TELL-ACTION25 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION25 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION25 to be INDICATE-YES-OR-NO.

TELL·ACTION25 was not grounded in INDICATE-YES-OR-NO because:

Can't concrete UTTERANCE22 to UTTERANCE-OF-INDICATE-YES-OR-NO because the ranges

differ.
Determining whether TELL-ACTION25 is a new plan for the existing goal of

KNOWING-WHETHER6

TELL-ACTION25 is not a new plan for the existing goal of KNOWING-WHETHER6 because:

Attempt to concrete incompatibly from TELL-ACTION25 to KNOWING-WHETHER6.

TELL·ACTION25 was not grounded in the preceding dialogue.

Found PLANFOR3 as an explanation for TELL-ACTION25.

Synopsis:
Goal: hearer know whether X;

Step 1: Tell hearer that X.

Inferred goal is KNOWING-WHETHER7.

Determining whether TELL-ACTION26 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION26 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION26 to be INDICATE-YES-OR-NO.

TELL-ACTION26 was not grounded in INDICATE-YES-OR-NO because:

Can't concrete UTTERANCE23 to UTTERANCE-OF-INDICATE-YES-OR-NO because the ranges

differ.
Determining whether TELL-ACTION26 is a new plan for the existing goal of

KNOWING-WHETHER6

TELL-ACTION26 is not a new plan for the existing goal of KNOWING-WHETHER6 because:

Attempt to concrete incompatibly from TELL-ACTION26 to KNOWING-WHETHER6.

TELL-ACTION26 was not grounded in the preceding dialogue.

Found PLANFOR3 as an explanation for TELL-ACTION26.

Synopsis:

Goal: hearer know whether X;

Step 1: Tell hearer that X.

Inferred goal is KNOWING-WHETHER8.

Attempting to resolve any ambiguities in KNOWING-WHETHER8

Retrieving potential conflicts with KNOWING-WHETHER8 and its plan

No conflict found.

Attempting to resolve any ambiguities in KNOWING-WHETHER7

Retrieving potential conflicts with KNOWING-WHETHER7 and its plan.

No conflict found.

PAGAN now tries to determine whether either of the inferred goals matches an
expectation, or constitutes a new plan for an existing goal. The goal of VC

knowing whether the file is in the user's directory is matched, so the interpre
tation that binds the word 'it' to the file is selected. The other interpretation is
rejected. ·

Determining whether KNOWING-WHETHER7 is grounded in the preceding dialogue.

Trying to ground KNOWING-WHETHER7 in INDICATE-YES-OR-NO.

KNOWING-WHETHER7 was not grounded in INDICATE-YES-OR-NO because:

Attempt to concrete incompatibly from KNOWING-WHETHER7 to INDICATE-YES-OR-NO.

Determining whether KNOWING-WHETHER7 is a new plan for the existing goal of

KNOWING-WHETHER6

KNOWING-WHETHER7 is a new plan for the existing goal of KNOWING-WHETHER6

Existing plan PLAN58 has been rejected; new plan is PLAN62.

Selecting KNOWING-WHETHER7 as the correct explanation ofTELL-ACTION25

Selecting TELL-ACTION25 as the correct explanation of (IT IS IN trMP)

115

116

Rejecting TELL-ACTION26 as an explanation of (IT IS IN /TMP).

Rejecting KNOWING-WHETHER8 as an explanation of TELL-ACTION26.

7.4.3. Delaying Ambiguity Resolution

The delay of ambiguity resolution is a natural outcome of the goal analysis algo

rithm presented here. If none of the above techniques for disambiguation is successful,

each of the potential explanations is extended individually. Thus, ambiguity resolution is

automatically delayed until some further explanation is found. If the chaining algorithm

described in Chapter 8 determines that no further processing should be done on an utter

ance that exhibits an apparent ambiguity, then the ambiguity is left as real ambiguity.

Processing Example

This trace shows PAGAN's processing of the sequence:

User: I want more disk space.
User: Will mv delete a file?

PAGAN detects the topic ambiguity in the user's second utterance. By disregarding this

ambiguity for several iterations of the goal analysis algorithm, it eventually resolves the

ambiguity by relating it to the user's goal, stated in the first utterance, of having more

disk space.

User: I want more disk space.

User: Will mv delete a file?

The semantic interpreter detects topic ambiguity in this utterance, and builds

two competing interpretations. In the first interpretation, the mv command is

the topic (that is, it is the argument of the WHAT-IS); in the second, file dele

tion is the topic.

The parser produced the following interpretations:

Interpretation 1 (TELL-ACTION28):

(HAS-GOAL54 (DOMAIN USER)

(RANGE

(TELL-ACTION28 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTOR35 =USER) (HEARER25 = UJ\'IX-CONSULTANT) (SPEAKER24 =USER)

(UTTERANCE26 =

(VERIFICATION-QUESTIONS (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-IS19 =

(MV

(ACTOR34* =

(DELETE-ACTION13 (DOMINATED BY FILE-DELETE-ACTION)

(CAUSES-OF -DELETE-ACTION16 =

(DELETION19 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECT14 = (FILE17 (DOMINATED BY FILE))))))))))))))

Interpretation 2 (TELL-ACTION29):

(HAS-GOALSS (DOMAIN USER)

(RANGE

(TELL-ACTION29 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTOR37 =USER) (HEARER26 = Ul\'IX-CONSULTANT) (SPEAKER2S =USER)

(UTTERANCE27 =

(VERIFICATION-QUESTION9 (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-IS20 =
(DELETE-ACTION14 (DOMINATED BY FILE-DELETE-ACTION) (ACTOR36 = MV)

(CAUSES-OF -DELETE-ACTION17 =
(DELETION20 (DOMINATED BY FILE-DELETION)

(STATE-CHANGE-OBJECTlS = (FILE18 (DOMINATED BY FILE))))))))))))

Unable to resolve the ambiguity immediately, PAGAN continues its processing.

Attempting to resolve any ambiguities in TELL-ACTION29

Retrieving potential conflicts with TELL-ACTION29 and its plan.

No conflict found.

Attempting to resolve any ambiguities in TELL-ACTION28

Retrieving potential conflicts with TELL-ACTION28 and its plan.

No conflict found.

The NO-STEP portion of the representation of the plan and goal structure of the
user's first utterance is simply a dummy plan step that never matches any real

event.

Determining whether TELL-ACTION28 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION28 in NO-STEP.

TELL-ACTION28 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from TELL-ACTION28 to NO-STEP.

Determining whether TELL-ACTION28 is a new plan for the existing goal of

INCREASED-DISK-SP ACE2

TELL-ACTION28 is not a new plan for the existing goal of INCREASED-DISK-SPACE2

because:
Attempt to concrete incompatibly from TELL-ACTION28 to INCREASED-DISK-SPACE2.

TELL-ACTION28 was not grounded in the preceding dialogue.

117

118

Found PLANFOR2 as an explanation for TELL-ACTION28.

Synopsis:
Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.

Inferred goal is KNOWING-WHETHER10.

Determining whether TELL-ACTION29 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION29 in NO-STEP.

TELL-ACTION29 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from TELL-ACTION29 to NO-STEP.

Determining whether TELL-ACTION29 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

TELL-ACTION29 is not a new plan for the existing goal of INCREASED-DISK-SPACE2

because:
Attempt to concrete incompatibly from TELL-ACTION29 to INCREASED-DISK-SPACE2.

TELL-ACTION29 was not grounded in the preceding dialogue.

Found PLANFOR2 as an explanation for TELL-ACTION29.

Synopsis:
Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.

Inferred goal is KNOWING-WHETHERll.

Again, PAGAN tries to resolve the ambiguity, but is unsuccessful. Processing

is continued.

Attempting to resolve any ambiguities in KNOWING-WHETHERll

Retrieving potential conflicts with KNOWING-WHETHERll and its plan.

No conflict found.

Attempting to resolve any ambiguities in KNOWING-WHETHER10

Retrieving potential conflicts with KNOWING-WHETHER10 and its plan.

No conflict found.

Determining whether KNOWING-WHETHER10 is grounded in the preceding dialogue.

Trying to ground KNOWING-WHETHER10 in NO-STEP.

KNOWING-WHETHER10 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from KNOWING-WHETHER10 to NO-STEP.

Determining whether KNOWING-WHETHER10 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

KNOWING-WHETHER10 is not a new plan for the existing goal ofiNCREASED-DISK-SPACE2

because:

Attempt to concrete incompatibly from KNOWING-WHET~ER10 to

INCREASED-DISK-SPACE2. KNOWING-WHETHER10 was not grounded in the preceding dialogue.

Found PLANFOR1 as an explanation for KNOWING-WHETHER10.

Synopsis:

Goal: Know f(X);

Step 1: Know that f(X) = Y

Inferred goal is KNOWING-THAT9.

Detennining whether KNOWING-WHETHERll is grounded in the preceding dialogue.

Trying to ground KNOWING-WHETHERll in NO-STEP.

KNOWING-WHETHERll was not grounded in NO-STEP because:

Attempt to concrete incompatibly from KNOWING-WHETHERll to NO-STEP.

Detennining whether KNOWING-WHETHERll is a new plan for the existing goal of

INCREASED-DISK-SPACE2

KNOWING-WHETHERll is not a new plan for the existing goal ofiNCREASED-DISK-SPACE2

because:

Attempt to concrete incompatibly from KNOWING-WHETHERll to

119

INCREASED-DISK-SPACE2. KNOWING-WHETHERll was not grounded in the preceding dialogue.

Found PLANFOR1 as an explanation for KNOWING-WHETHERll.

Synopsis:

Goal: Know f(X);

Step 1: Know that f(X) = Y

Inferred goal is KNOWING-THATlO.

The ambiguity still cannot be resolved.

Attempting to resolve any ambiguities in KNOWING-THA TlO

Retrieving potential conflicts with KNOWING-THAT10 and its plan.

No conflict found.

Attempting to resolve any ambiguities in KNOWING-THAT9

Retrieving potential conflicts with KNOWING-THAT9 and its plan.

No conflict found.

Detennining whether KNOWING-THAT9 is grounded in the preceding dialogue.

Trying to ground KNOWING-THAT9 in NO-STEP.

KNOWING-THAT9 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from KNOWING-THAT9 to NO-STEP.

Detennining whether KNOWING-THAT9 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

KNOWING-THAT9 is not a new plan for the existing goal ofiNCREASED-DISK-SPACE2 because:

Attempt to concrete incompatibly from KNOWING-THAT9 to INCREASED-DISK-SPACE2.

KNOWING-THAT9 was not grounded in the preceding dialogue.

Here, PAGAN is hypothesizing that the user may want to know how to use mv

so as to do whatever it is that mv does. Since PAGAN doesn't know exactly

which effect of mv is intended, it simply produces the generic EVENT14 to

represent this effect.

Found PLANFOR8 as an explanation for KNOWING-THAT9.

120

Synopsis:

Goal: Achieve x;
Step 1: Know how to X;

Step 2: Do X
Inferred goal is EVENT14.

Determining whether KNOWING-THATlO is grounded in the preceding dialogue.

Trying to ground KNOWING-THATlO in NO-STEP.

KNOWING-THA TlO was not grounded in NO-STEP because:

Attempt to concrete incompatibly from KNOWING-THAT10 to NO-STEP.

Determining whether KNOWING-THATIO is a new plan for the existing goal of

INCREASED-DISK-SP ACE2

KNOWING-THATlO is not a new plan for the existing goal ofiNCREASED-DISK-SPACE2 because:

. Attempt to concrete incompatibly from KNOWING-THATlO to INCREASED-DISK-SPACE2.

KNOWING-THAT10 was not grounded in the preceding dialogue.

The goal of knowing how to delete a file is explained here by the goal of actu

ally deleting a file.

Found PLANFOR8 as an explanation for KNOWING-THATlO.

Synopsis:

Goal: Achieve X;

Step 1: Know how to X;

Step 2: Do X
Inferred goal is DELETION22.

The ambiguity persists.

Attempting to resolve any ambiguities in DELETION22

Retrieving potential conflicts with DELETION22 and its plan.

No conflict found.

Attempting to resolve any ambiguities in EVENT14

Retrieving potential conflicts with EVENT14 and its plan.

No conflict found.

Determining whether EVENT14 is grounded in the preceding dialogue.

Trying to ground EVENT14 in NO-STEP.

EVENT14 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from EVENT14 to NO-STEP.

Determining whether EVENT14 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

EVENT14 is not a new plan for the existing goal ofiNCREASED-DISK-SPACE2 because:

Attempt to concrete incompatibly from EVENT14 to INCREASED-DISK-SPACE2.

EVENT14 was not grounded in the preceding dialogue.

Since EVENT14 is simply a dummy effect of the mv command, PAGAN finds no
explanation for it.

No explanation found for EVENT14.

f

Determining whether DELETION22 is grounded in the preceding dialogue.

Trying to ground DELETION22 in NO-STEP.

DELETION22 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from DELETION22 to NO-STEP.

Determining whether DELETION22 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

DELETION22 is not a new plan for the existing goal of INCREASED-DISK-SPACE2 because:

Attempt to concrete incompatibly from DELETION22 to INCREASED-DISK-SPACE2.

DELETION22 was not grounded in the preceding dialogue.

File deletion is a plan for gaining increased disk space. For this example, in
creased disk space is the only effect of file deletion that has been included in
the knowledge base.

Found PLANFOR14 as an explanation for DELETION22.

Synopsis:

Goal: increased disk space;

Step 1: delete a file

Inferred goal is INCREASED-DISK-SP ACE3.

Attempting to resolve any ambiguities in INCREASED-DISK-SPACE3

Retrieving potential conflicts with INCREASED-DISK-SPACE3 and its plan.

No conflict found.

Finally, the 'file' interpretation is connected to the plan and goal structure
produced during the processing of the user's first statement. This interpreta
tion is selected, while the 'directory' interpretation is rejected.

Determining whether INCREASED-DISK-SPACE3 is grounded in the preceding dialogue.

Trying to ground INCREASED-DISK-SPACE3 in NO-STEP.

INCREASED-DISK-SPACE3 was not grounded in NO-STEP because:

Attempt to concrete incompatibly from INCREASED-DISK-SPACE3 to NO-STEP.

Determining whether INCREASED-DISK-SPACE3 is a new plan for the existing goal of

INCREASED-DISK-SPACE2

INCREASED-DISK-SPACE3 is a new plan for the existing goal ofiNCREASED-DISK-SPACE2

Existing plan PLAN64 has been rejected; new plan is PLAN74.

Selecting INCREASED-DISK-SPACE3 as the correct explanation of DELETION22

Selecting DELETION22 as the correct explanation of KNOWING-THA no
Selecting KNOWING-THATlO as the correct explanation of KNOWING-WHETHERll

Selecting KNOWING-WHETHERll as the correct explanation ofTELL-ACTION29

Selecting TELL-ACTION29 as the correct explanation of (WILL MV DELETE A FILE)

Rejecting TELL-ACTION28 as an explanation of (WILL MV DELETE A FILE).

Rejecting KNOWING-WHETHERlO as an explanation of TELL-ACTION28.

Rejecting KNOWING-THAT9 as an explanation ofKNOWING-WHETHERlO.

Rejecting EVENT14 as an explanation of KNOWING-THAT9.

121

122

7 .5. Summary

There are three ways to handle ambiguity, regardless of the source of that ambi
guity. First, one of the interpretations can be selected as the correct one. The most
important method for selecting the correct interpretation, and one that has been widely
used, is to match that interpretation against an expected event. Secondly, interpretations
can be rejected as incorrect until only the correct interpretation remains. Rejection is
based on detecting a conflict between the interpretation and some other knowledge held
by the system. This chapter provided a framework for examining such 'knowledge
conflicts.' Six types of conflict that might hold between an interpretation of an utterance
and the user model were described. Finally, delaying the resolution of an ambiguity to
some later time is an acceptable way to handle ambiguity.

Chapter 8

Extending an Explanation

The third main step of the goal analysis algorithm is to determine whether the
analysis of the utterance should be continued. To continue the analysis of a particular

utterance is to extend a chain of inferences about that utterance by inferring an additional
planfor to explain the most recently inferred goal. I call such a chain of inferences an

explanation chain.

My purpose in this chapter is threefold. First, I discuss previous approaches to the
problem of determining when to continue analysis, and show how certain of these

approaches are flawed. Secondly, I introduce an algorithm for determining when goal

analysis should continue. This algorithm is based on determining whether the explana
tion is complete (as described in Chapter 3). Finally, I demonstrate how an outside pro
cess can explicitly control chaining on an explanation.

8.1. Previous Approaches

Consider the utterance:

User: Can you tell me how to edit a file?

One possible explanation chain of this question contains the following goals:

I. The user wants to request that you tell her how to delete a file
2. The user wants to know how to edit a file
3. The user wants to edit a file
4. The user wants to insert the text of a paper into a file
5. The user wants to print a paper
6. The user wants to publish a paper
7. The user wants to get tenure

123

124

Each of these goals represents the result of one iteration of the plan recognition algo
rithm. The first goal directly explains the utterance. Each of the subsequent goals pro
vides an explanation for the preceding goal, and therefore provides part of an explanation

for the utterance.

A system that is designed to be general enough to handle a wide range of inputs
will represent the knowledge needed to make some or all of these inferences separately.

However, not all of these explanations will be applicable to every system that must han
dle the utterance in question. Consequently, PAGAN must determine which of these
inferences it should make, and which it should avoid making. Since each inference is
built on the preceding inference, the decision that must be made is when the chaining
process should continue, and when it should stop.

Some systems make every possible inference. This is an acceptable approach
because their domains are highly constrained. In a less constrained environment in
which the system must deal with a wide range of human affairs, this approach is not ten
able. This is true even if the particular topic of discussion is quite limited, because the
system will still need access to a wide range of world knowledge. Therefore, some
method for determining when to cut off the inference process is needed.

The following rules have been proposed for deciding when to halt chaining:

Rule 1. Halt when the plan inferred serves a known goal. [Mann et al. 1977]
Rule 2. Halt when a thematic explanation is found [Wilensky 1978]
Rule 3, Halt when the goal is uninteresting [Schank 1979]
Rule 4. Halt when a meta-plan to a known plan is found [Litman 1985]
Rule 5. Halt when a domain goal is encountered. [Litman 1985]
Rule 6. Halt when an ambiguity is encountered. [Sidner 1985]

Rule 1 says that chaining should stop when an inferred explanation matches some
expected goal. Rule 2 introduces themes to serve as high-level expectations, thereby
allowing Rule 1 to be applicable when there has been no preceding dialogue. Rule 3 pro
poses that the decision about when to chain should be based not only on the content of
the utterance, but also on the hearer's attitudes towards the utterance and the inferred

goals. Rule 4 expands the notion of how an utterance may connect to previous dialogue
by viewing it as a meta-plan to some existing dialogue plan. Rule 5 supports the position
that chaining should stop as soon as some goal in the domain of discourse is inferred.
Finally, Rule 6 says that chaining should stop when two or more explanations of the

same event are found that cannot be disambiguated immediately.

Each of rules 1-4 will be incorporated into the goal analysis algorithm in the fol
lowing sections. Rules 5 and 6 concern the termination of chaining when the explanation

cannot be grounded in knowledge of the preceding dialogue. Each of these rules is prob

lematic. Rule 5 is problematic because the first domain goal encountered may not be the
important one. Consider the question:

125

User: Can you tell me how I can compact my directory?

The first domain goal that is encountered in the analysis of this utterance is the goal of

compacting a directory. If analysis is halted once this goal is inferred, there is no way

that the system can suggest for example that the user request a larger disk quota from the

system manager. This is because to do so would require that the system know of the

user's goal of gaining more disk space. If chaining is stopped once the goal of compact

ing the directory has been inferred, this motivating domain goal will never be discovered.

Rule 6 is also problematic. Sidner' s reason for discontinuing processing when an

ambiguity is detected is that a participant in a dialogue cannot expect a hearer to react to

an utterance based on "the assumption that somehow the hearer will guess at the infor

mation that is needed for the hearer to make an intended response" [p. 4]. This is true;

however, it does not follow that processing should be halted when an ambiguity is

encountered. There are two reasons that it may be important to continue analysis after an

ambiguity has been discovered. First, such subsequent processing may itself prove

important for the analysis of the utterance. The best example of this is when further pro

cessing allows the ambiguity to be resolved. This phenomenon was discussed in Chapter

7.

The second reason that it may be important to continue processing after an ambi

guity is detected is that the speaker may not be aware that the ambiguity is present. A

speaker never has a perfect model of the hearer. Consequently, an utterance that is

believed by its speaker to be unambiguous may be perceived by a hearer as ambiguous.

In such cases, it may be important for the hearer to fully develop the competing interpre

tations, even if the ambiguity cannot be resolved. Doing so gives the components of the

system outside of the goal analyzer the greatest latitude in deciding which goals to

address.

The approach to chaining implicit in these rules bases the decision to chain on each

competing explanation chain individually. That is, when a goal is inferred, the decision

about whether that goal must itself be explained does not depend on what other potential

explanation chains are extant. In contrast to this approach is the resource-based method,

exemplified by Allen [1979]. In this method, decisions are made not about whether an

explanation for a goal is needed, but rather about where processing power should be

directed. Allen's system for example had a set of heuristics for rating the strength of an

explanation. Processing was done on the explanation with the highest rating. Thus the

decision about whether to chain on a particular explanation was based not only on the

attributes of that explanation, but also on attributes of all other explanations under con

sideration.

There are two main problems with this resource-based approach to chaining. First,

it fails when a single utterance is made in service of multiple goals. In such cases, this

approach will find only one chain of goals that motivated the utterance. Secondly, this

approach assumes that the processor is a scarce resource. With the development of paral

lel architectures and languages, it is becoming increasingly feasible to carry forward mul

tiple lines of reasoning. A procedure for determining when to chain should be able to

126

take advantage of such parallelism.

The rules described above represent pieces of the solution to the chaining problem.
What has been lacking in the literature is not so much heuristics to apply to the chaining

problem as a framework that ties together the available heuristics. In the following sec
tion I propose such a framework. I then show how the valid heuristics itemized above
(rules 1-4), as well as some new heuristics, can be placed into this framework to form a

complete approach to the chaining problem.

8.2. Deciding When to Chain

The framework for deciding when to chain that I propose is based on two assess
ments:

1. An assessment of the completeness of the explanation chain
2. An assessment of the practicability of chaining

The decision about whether to chain is dominated (but not dictated) by whether
PAGAN believes the explanation chain to be complete. I refer here to the modified princi

ple of depth completeness described in Chapter 3. If the explanation chain is complete,
there is no reason to continue trying to explain the utterance. If the explanation chain is
not complete, then under ideal circumstances processing should continue until it is com

plete. Thus, the first step in deciding whether to chain is to determine whether the expla
nation chain in question is complete.

Of course, it is not always possible to determine whether an explanation chain is
complete. Thus, the function that examines an explanation chain to see whether it is
complete must indicate that one of three conditions holds:

1. The explanation chain is complete
2. The explanation chain is incomplete
3. It cannot be determined whether the explanation chain is complete

Once the determination has been made as to whether an explanation chain is com

plete, that know ledge must be used to decide whether to continue processing. Ideally,

processing would stop if the explanation chain were complete, and would continue other

wise. This would result in the explanation meeting the completeness criterion described

in Chapter 3. However, the difficulty of determining whether an explanation chain is
complete, together with resource limitations, prevent this strategy from being a practical

one. Consequently, if it can be determined that the explanation chain is certainly com
plete, or that the explanation chain is certainly incomplete, the decision about whether to

chain is based on this determination. However, if it cannot be determined whether the
explanation chain is complete, PAGAN must decide _whether to chain by assessing the

benefits of chaining and comparing these benefits against the cost of chaining. If the
benefits outweigh the cost, chaining continues. However, if the converse holds, chaining

halts. This limits computational expense, at the cost of producing an explanation that is

127

not as good according to the criteria described in Chapter 3.

The completeness of an explanation chain is largely based on the characteristics of

that explanation chain. In contrast, the cost/benefit analysis of chaining is primarily

based on the status of PAGAN's processing. The cost of chaining is determined by

estimating the amount of work that will be required to find all reasonable explanations

for the goal in question. The benefits of chaining are determined by assessing PAGAN's

curiosity about the goal. Both of these estimates rely not only on knowledge of the goal

to be explained, but also on knowledge of the system's goals and capabilities.

When PAGAN cannot determine whether an explanation chain is complete or

incomplete, it estimates the costs and the benefits of chaining. These estimates are used

in the following way. If the strength of one exceeds the strength of the other by a thres

hold, the stronger one is given precedence. For example, if the curiosity level is high,

and the cost of continuing the analysis appears to be low, chaining continues. If on the

other hand the two are of roughly equal strength, then analysis is discontinued.

In the following subsections, I first show how an explanation chain may be deemed

to be complete or incomplete. I then discuss how a cost/benefits analysis of chaining

may be performed. In the section following this one, I describe how an outside process

can request the continuation of an analysis that this algorithm has determined should be

discontinued.

8.2.1. Determining that an Explanation Chain is Complete

There are two conditions that indicate to PAGAN that an explanation chain is com

plete:

1. The explanation chain has previously been determined to be complete

2. The explanation chain meets established criteria for completeness

First, the explanation chain may already have been determined to be complete. This is

the case when an explanation chain matches an expectation. Expectation matching was

described in Chapter 5 as a way to connect an utterance to a representation of the preced

ing dialogue, thereby grounding the utterance in the dialogue. Since PAGAN already has

an adequate explanation for any action that it expects, no further work is required to

satisfy its needs in this situation. Note that if metaplans are viewed as unexpected steps

of existing plans, they can be handled during expectation matching.

The second way that PAGAN may decide that an explanation chain is complete is

by applying established completeness criteria. Such criteria are derived from knowledge

of the system's own domain of expertise. This use of knowledge of the domain of exper

tise, that is, knowledge of the system's contract with the user, stems directly from the

principle of applicability discussed in Chapter 3. An explanation chain is declared to be

complete when the most recently inferred goal is no longer applicable to the purposes of

the system. Consider for example the following question:

128

User: How can I read a phone number that's in Beth's directory?

An explanation of this utterance might contain the goal of making a phone call. Such an

explanation chain is complete for UC (whether or not it meets the other criteria for good

explanations) because the goal of making a phone call is not within the UC domain.

8.2.2. Determining that an Explanation Chain is Incomplete

In addition to determining that an explanation chain is complete, it may also be

possible to determine that it is incomplete. There are two approaches to judging the

incompleteness of an explanation chain:

1. Examination of the character of the explanation itself
2. Examination of expectations derived from the preceding dialogue

Some goals seem to fall naturally under the rubric of incomplete explanations. Such a

goal is called an instrumental goal. An instrumental goal is one that arises only to serve

another goal [Schank and Abelson 1977]. Schank and Abelson's concept of an instru

mental goal is an absolute one; a particular goal is either an instrumental goal or it isn't.

Thus, getting a loan is always instrumental to using the money. In contrast to this posi

tion, I claim that what is instrumental is relative to the task at hand. Editing a file is

instrumental to writing a dissertation, but at the level at which UC works, it may be a

top-level goal.

The second way that an explanation chain may be judged to be incomplete is based

on knowledge of the preceding dialogue. When there is a strong expectation of a particu

lar action, and the explanation chain built so far neither matches that expectation nor is

grounded in the previous dialogue in any way, incompleteness is indicated. This pro

vides a strong impetus to treat the next utterance as a means of achieving the expected

action. Consider again this exchange:

uc: Is the file in your directory?
User: The file is in /tmp.

Here there is a strong expectation that the user's utterance will somehow relate to UC's

question. Consequently, chaining should continue on this utterance until it is determined

that the user's utterance constitutes a new plan for UC's goal (as described in Chapter 5).

8.2.3. Determining the Cost of Chaining -- Difficulty of Analysis

It is sometimes expedient to save processing time at the expense of producing a

poorer explanation of an utterance. The principle of difficulty of analysis holds that

analysis of an utterance should be terminated if the cost of continuing the analysis

becomes too high. Consider for example the question:

.....
I

129

User: How can I edit a file?

In the absence of other knowledge, the goal of editing a file is a difficult one to explain.
There are many reasons that one might want to edit a file. It would be prohibitively
expensive to carry out an analysis of each of these explanation chains. The principle of
difficulty of analysis provides an impetus for the goal analyzer to terminate processing in
such situations.

8.2.4. Determining the Benefits of Chaining -- Curiosity

The benefits of chaining on an explanation chain that is clearly incomplete are
obvious when one's goal is to produce complete explanations. Chaining is always done
on such explanation chains. When the explanation chain in question is not clearly
incomplete though, PAGAN must base the chaining decision not on the absolute charac
teristics of the explanation, but rather with how those characteristics relate to the goals of
the system. The principle of curiosity defines this relationship. This principle directs
PAGAN to continue analysis on goals about which it is curious. I define interestingness

as that quality that causes PAGAN to be curious about a goal [cf. Schank 1979].

A goal is deemed to be interesting when it is in an interesting goal relationship
with another goal. Wilensky [1983] identifies four kinds of goal relationships: goal over
lap, goal concord, goal conflict, and goal competition. Any of these types of goal rela
tionships can give rise to curiosity based on interestingness. I will focus here on goal
competition (which is a negative relationship between the goals of two different agents).

Goal competition is defined by Wilensky as a situation in which "the fulfillment of
one [agent's] goals precludes the fulfillment of another's" [1983, p. 58]. When a
speaker's goal comes into competition with a goal held by the system, PAGAN should be
curious about that goal. For example, if the user asks:

User: How do I change the 'cat' program?

PAGAN may infer that the user wants to change the cat1 program. This goal competes
with UC's goal of preserving system programs. Because of this competition, PAGAN will
be curious about why the user would want to change the cat program. It will continue its
analysis, possibly arriving at the motivating goal of having a program that is similar in
effect to the cat program. This allows uc to propose the 'copy, then change' plan:

uc: First copy the source code with cp, then edit and compile the copy.

The importance of curiosity can be seen by examining the processing of the ques-
tion:

1 ca1 is a system program in UNIX that displays the contents of a file.

130

User: How do I change a.out?2

In this example, there may be many ways to change a.out. To select the correct one, the

planner needs to know what goal motivates the speaker to want to change a.out. This

motivating goal is most likely to be the alteration of the behavior of the program. How

ever, if the planner isn't aware of that goal, it may well choose a different plan, such as:

uc: Use gnumacs.

Using an editor on executable code, while it could theoretically be used to effect a

desired programmatic change, is in most cases a ridiculous plan for doing so. An

appropriate response would be:

uc: Edit the source code, then recompile it.

The point here is that inferring a higher-level goal may allow the concretion of a

lower-level goal. In this example, inferring the goal of changing the program's behavior

allows a concretion to be made from 'changing a. out' to 'changing the behavior of a. out'

Since the planner may have more specific plans for more specific goals, the performance

of such a concretion may reveal a better plan.

8.3. External Control of Chaining

The amount of work that PAGAN does on an explanation of an utterance can also

be controlled by outside processes. This is achieved by allowing other processes to re

invoke PAGAN on an utterance, indicating that more of an explanation of the utterance is

needed. Consider the question:

User: How do I edit one of Barney's files?

PAGAN's processing of this question is initially simple. It starts by inferring that the user

wants to edit a file owned by Barney. At this point, PAGAN determines that the goal it

has inferred is neither obviously instrumental, nor intrinsically interesting. Therefore,

PAGAN halts its processing of the utterance. uc then calls KIP [Luria 1988] to plan for

the goal of editing Barney's file. KIP tries to do so, but fails. The reason is that, in

UNIX, typically only the owner of a file may edit that file. Instead of exerting great

energy to find some convoluted plan to achieve this goal, KIP simply re-invokes PAGAN,

indicating that it would prefer to plan for some other goal. It is easy for PAGAN to find a

parent goal, namely that the user wants a file with contents similar to those of Barney's

file.3 KIP now has a goal with a well-known plan, and so produces the 'copy file, then

edit the copy' plan.

2 In Ul\'IX, a.out is a common name for an executable program.

3 This is not a parent goal in every context, but making that determination is a separate issue.

\... 131

This complicated flow of control is advantageous for two reasons. First, when the

initial goal cannot easily be planned for, the savings in planning time can be consider

able. In this example, if KIP worked hard, it might be able to construct a plan for the goal

initially suggested by PAGAN (for instance, 'boot the machine that is acting as the file

server single user, login as root, then edit the file'). Or, KIP might continue planning ad

infinitum for a goal that it cannot solve. If PAGAN can infer a parent goal for which it is

easy to construct a plan, as in this example, such wasted planning can be avoided.

The second benefit of this control structure is that in cases where the initial goal

can be planned for easily, goal analysis time is reduced. This savings can be significant;

continuation of goal analysis, once a reasonable goal has been inferred, is often expen

sive.

Processing Example

This trace shows how PAGAN can be re-invoked on an analysis that it had initially

terminated. The utterance being processed is:

User: How do I edit Barney's file?

The analysis proceeds unFil the goal of editing the file is inferred, at which point PAGAN

terminates its processing. PAGAN is then re-invoked to continue its analysis. It goes on

to infer the goal of obtaining a changed version of the contents of the file.

User: How do I edit Barney's file?

Interpretation produced by the parser: TELL-ACTION34

Chaining is continued on this utterance until the domain goal of editing

Barney's file has been inferred.

Determining whether to chain on TELL-ACTION34.

Determining whether TELL-ACTION34 is a complete explanation of

(HOW DO I EDIT BARNEY'S FILE).

Determining whether TELL-ACTION34 is outside of uc's domain of expertise.

TELL-ACTION34 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION34 is an incomplete explanation of

(HOW DO I EDIT BARNEY'S FILE).

Determining whether TELL-ACTION34 is an instrumental goal.

TELL-ACTION34 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on TELL-ACTION34.

132

Determining whether TELL-ACTION34 is grounded in the preceding dialogue.

TELL-ACTION34 was not grounded in the preceding dialogue.

Found PLANFOR4 as an explanation for TELL-ACTION34.

Synopsis:
Goal: know something;

Step 1: ask;

Step 2: be told.
Inferred goal is KNOWING-THAT13.

Determining whether to chain on KNOWING-THA Tl3.

Determining whether KNOWING-THAT13 is a complete explanation ofTELL-ACTION34.

Determining whether KNOWING-THAT13 is outside of uc's domain of expertise.

KNOWING-THAT13 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-THAT13 is an incomplete explanation ofTELL-ACTION34.

Determining whether KNOWING-THAT13 is an instrumental goal.

KNOWING-THAT13 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on KNOWING-THAT13.

Determining whether KNOWING-THAT13 is grounded in the preceding dialogue.

KNOWING-THAT13 was not grounded in the preceding dialogue.

Found PLANFOR8 as an explanation for KNOWING-THAT13.

Synopsis:
Goal: Achieve X;

Step 1: Know how to X;

Step 2: Do X

Inferred goal is EDITING3.

PAGAN now determines whether it should try to figure out why the user might

want to edit Barney's file (as represented by EDITING3). It decides against

continuing its processing, because the estimated costs of continuing outweigh

its interest in continuing. Consequently, processing is halted.

Determining whether to chain on EDITING3.

Determining whether EDITING3 is a complete explanation ofKNOWING-THAT13.

Determining whether EDITING3 is outside of uc's domain of expertise.

EDITING3 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether EDITING3 is an incomplete explanation of KNOWING-THAT13.

Determining whether EDITING3 is an instrumental goal.

EDITING3 is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is no strong expectation for a particular action.

The explanation is not necessarily incomplete.

Determining the level of curiosity about EDITING3.

Determining the level of interest in EDITING3.

Interest level = o.

Determining the level to which the goal EDITING3 conflicts with system goals.

Conflict level = o.

Curiosity level = o.
Determining estimated cost of chaining on EDITING3.

Estimated cost = 1.

Chaining should not be done on EDITING3.

PAGAN is now re-invoked by an outside process. It continues its processing of

the utterance where it left off.

Re-invoking PAGAN to continue its analysis.

Determining whether EDITING3 is grounded in the preceding dialogue.

EDITING3 was not grounded in the preceding dialogue.

PAGAN finds the goal of obtaining access to the altered contents of the file as

an explanation of EDITING3. This goal is easier to plan for than the goal of

editing someone else's file; one can simply copy the file, then edit the copy.

Found PLANFORlO as an explanation for EDITING3.

Synopsis:
Goal: have file with changed contents;

Step 1: edit file

Inferred goal is OBTAIN-CHANGED-CONTENTSO.

Determining whether to chain on OBT AIN-CHANGED-CONTEr-..'TSO.

Determining whether OBTAIN-CHANGED-COr-..'TEr-..'TSO is a complete explanation of

EDITING3.

Determining whether OBTAIN-CHANGED-CONTENTSO is outside ofUC's domain of

expertise.

OBTAIN-CHANGED-CONTENTSO is not outside of UC's domain of expertise.

The explanation is not necessarily complete.

Determining whether OBT AIN-CHANGED-CONTENTSO is an incomplete explanation of

EDITING3.

Determining whether OBT AIN-CHANGED-CONTENTSO is an instrumental goal.

OBTAIN-CHANGED-CONTENTSO is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is no strong expectation for a particular action.

The explanation is not necessarily incomplete.

Determining the level of curiosity about OBT AIN-CHANGED-CONTENTSO.

Determining the level of interest in OBT AIN-CHANGED-CONTENTSO.

Interest level = o.

Determining the level to which the goal OBTAIN-CHANGED-CONTENTSO conflicts

with system goals.

Conflict level = o.

Curiosity level = o.

133

134

Determining estimated cost of chaining on OBTAIN-CHANGED-CONTENTSO.

Estimated cost = 1.

Chaining should not be done on OBT AIN-CHANGED-CONTENTSO.

8.4. Implementation

In the following sections, I discuss some of the implementation details of the con

cepts discussed in this chapter. First, I cover how PAGAN can determine whether a goal

is instrumental, and whether it is applicable. Next, I discuss the identification of a strong
expectation for a particular action. Finally, I discuss the two components of determining

the practicability of chaining: difficulty of analysis and curiosity. The implementation of

expectation matching was discussed in Chapter 5.

8.4.1. Determining Instrumentality and Applicability

The most general approach to determining whether a goal is within the system's

domain of expertise would take into consideration not only the goal itself and the pur

poses of the system, but also knowledge of the user and of the preceding dialogue. In

practice though, it is more efficient, albeit less flexible, simply to mark explicitly each

type of goal that is within the system's domain of expertise. This is the technique that

the implementation of PAGAN uses to determine which goals are in UC's domain of

discourse. While this technique cannot change its evaluations as the topic of conversa
tion shifts, it can be a good approximation when the purpose of the system is limited (as

it is in the UNIX Consultant). The implementor of such a system must take care to dis

tinguish between goals that are beyond the range of goals that concern the system, and

those that may be instrumental to goals that concern the system. The latter should be

marked not as beyond the system's domain of expertise, but rather as instrumental goals.

As in determining when a goal is within the system's domain of expertise, deter

mining instrumentality would ideally consider all the circumstances of the utterance,

including knowledge of the speaker and of the previous dialogue. However, because of

UC's limited domain, PAGAN can use its knowledge of the consulting process to make

some assumptions about which goals are instrumental. Thus for example, linguistic

goals are instrumental goals, because they are pursued only in order to achieve domain

goals. On a more abstract level, any communicative goal is an instrumental goal for

PAGAN. Consider the complaint:

User: I tried typing 'rm foo', but it told me that foo wasn't found.

In this example, the goal of typing is aimed at communicating with UNIX, and is there

fore an instrumental goal. A goal of executing a program is also an instrumental goal. In

this example, the goal of executing the rm command, which may be inferred from the

135

goal of typing 'rm,' is therefore also an instrumental goal.

Once the goal types contained in the system have been categorized according to
instrumentality, these goals can be marked as such in long-term memory. Recognition of
instrumental goals is then simply a matter of determining whether the goal under con
sideration bears the instrumental attribute. Thus, each goal that is included in PAGAN's
knowledge base is described there either as an instrumental goal, a domain goal, or a goal
that is beyond uc's domain. See the following section for a processing example that
illustrates these points.

8.4.2. Identifying Strong Expectations

Strong expectations are identified by examining the dialogue representation. A

strong expectation is indicated when a pending step of a plan is an action to be taken by
the user. The strength of the expectation is a function of the recency of the immediately
preceding plan step. If the preceding step has just been performed, the strength of the
expectation is high. For example, immediately after the system asks a question of the
user, there is a strong expectation that the user will respond to the question. On the other
hand, if a larger number of utterances have occurred since the preceding plan step was
executed, the strength of the expectation is low. This corresponds to the intuition that the
longer an expectation remains unmet, the less likely it is to be met eventually.

Processing Example

The following trace shows PAGAN's processing of the user's utterance in the
exchange:

UC: Is the file in your directory?
User: The file is in /tmp.

Only those portions of the trace relevant to PAGAN's decision about chaining are shown.
In this example, the chaining decision is made three times. The first time, analysis is
continued because the inferred goal is an instrumental goal, and the explanation chain is
therefore incomplete. The second time, analysis is also continued, in this case because
there is a strong expectation for a response to the question. The last time, analysis is
halted because the user's utterance has been grounded in the preceding dialogue, and the
explanation is therefore complete.

uc: Is the file in your directory?

136

User: The file is in /tmp.

Interpretation produced by the parser: TELL-ACTION36

The first chaining decision is based on the representation of the user's utter

ance. Since telling is considered an instrumental goal, chaining continues.

Determining whether to chain on TELL-ACTION36.

Determining whether TELL-ACTION36 is a complete explanation of (THE FILE IS IN /fMP).

Determining whether TELL-ACTION36 is outside of uc's domain of expertise.

TELL-ACTION36 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION36 is an incomplete explanation of

(THE FILE IS IN /fMP).

Determining whether TELL-ACTION36 is an instrumental goal.

TELL-ACTION36 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on TELL-ACTION36.

Determining whether TELL-ACTION36 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION36 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION36 to be INDICATE-YES-OR-NO.

TELL-ACTION36 was not grounded in INDICATE-YES-OR-NO because:

Can't concrete UTTERANCE35 to UTTERANCE-OF-INDICATE-YES-OR-NO because the ranges

differ.
Determining whether TELL-ACTION36 is a new plan for the existing goal of

KNOWING-WHETHER13

TELL-ACTION36 is not a new plan for the existing goal of KNOWING-WHETHER13

because:
Attempt to concrete incompatibly from TELL-ACTION36 to KNOWING-WHETHER13.

TELL-ACTION36 was not grounded in the preceding dialogue.

Found PLANFOR3 as an explanation for TELL-ACTION36.

Synopsis:
Goal: hearer know whether X;

Step 1: Tell hearer that X.

Inferred goal is KNOWING-WHETHER14.

The second chaining decision is based on the user's goal of VC knowing

whether the file is in the directory. To demonstrate the use of strong expecta

tions in chaining, I have removed the concept of KNOWING (from which

KNOWING-WHETHER14 is descended) from the set of instrumental goals for

this example. However, chaining is still performed, because PAGAN has a

strong expectation that the user will respond to vc' s question (represented by

PLAN88).

Determining whether to chain on KNOWING-WHETHER14.

Determining whether KNOWING-WHETHER14 is a complete explanation of TELL-ACTION36.

Determining whether KNOWING-WHETHER14 is outside of uc's domain of expertise.

KNOWING-WHETHER14 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether Kl'\OWING-WHETHER14 is an incomplete explanation of

TELL-ACTION36.

Determining whether KNOWING-WHETHER14 is an instrumental goal.

KNOWING-WHETHER14 is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is a strong expectation for PLAN88

The explanation is incomplete.
Chaining should be done on KNOWING-WHETHER14.

Now, PAGAN tries to determine whether KNOWING-WHETHER14 fits into the

previous dialogue somehow. It does, so processing is halted.

Determining whether KNOWING-WHETHER14 is grounded in the preceding dialogue.

Trying to ground KNOWING-WHETHER14 in INDICATE-YES-OR-NO.

KNOWING-WHETHER14 was not grounded in INDICATE-YES-OR-NO because:

Attempt to concrete incompatibly from KNOWING-WHETHER14 to INDICATE-YES-OR-NO.

Determining whether KNOWING-WHETHER14 is a new plan for the existing goal of

KNOWING-WHETHER13

KNOWING-WHETHER14 is a new plan for the existing goal of KNOWING-WHETHER13

Existing plan PLAN87 has been rejected; new plan is PLAN89.

8.4.3. Determining Difficulty of Analysis

137

Part of the task of determining difficulty of analysis is subsumed by the task of

determining whether a goal is an instrumental goal, a domain goal, or a goal outside of

the system's domain. PAGAN assumes that instrumental goals are easy to explain, but

that goals outside of the system's domain are quite difficult to explain (since it is unlikely

that the system contains the requisite knowledge). Thus, the only goals for which

difficulty of analysis must be assessed are domain goals.

Determining the difficulty of analysis for domain goals requires a method to esti

mate resource usage for continuation of a particular explanation chain. The only way to

know this cost for sure is to carry out the analysis. Consequently, a heuristic approach to

the problem is called for. One of the simplest such heuristics is to estimate the cost of

continuing an explanation chain in proportion to the cost incurred so far by that explana

tion chain. This can be done by monitoring the total branching that has taken place

among all explanation chains of the utterance that are under consideration. Once this

amount exceeds a threshold, any further branching brings the principle of difficulty of

analysis into play. The strength of the principle is proportional to the total amount of

branching found among all active explanation_ chains. This is the approach taken in the

implementation of PAGAN.

138

8.4.4. Determining Curiosity

The interestingness of a goal is dictated by the relationships that exist between that

goal and other goals held by the system and by the user. Wilensky [1978] describes the

detection of goal relationships in the context of story understanding. Often, it is possible

to short-cut the process of detecting goal relationships by marking certain concepts as

inherently interesting. For example, each of the following questions addresses a goal that

might be inherently interesting to UC:

User: How can I get the sources to Rogue?

User: How can I lay waste to a directory?

User: How do I change a.out?

The first example concerns an interesting object: the game of Rogue. The second

addresses an interesting action: wreaking havoc. Each of these goals might well be con

sidered inherently interesting by a UNIX Consultant system. The third example

addresses the goal of manipulating the contents of a binary file. Neither of the concepts

in this example, 'changing a file' and 'binary file,' is interesting in itself. Rather, it is the

combination of the two that produces a concept that is interesting. Note that the decision

about whether a goal is inherently interesting is not a decision that may be made by the

goal analyzer without considering the task of the system in which it is embedded; rather,

the criteria for what deserves automatic attention will change as the domain in which the

goal analyzer operates changes.

Processing Example

The following trace shows the chaining decisions made by PAGAN in processing

the utterance:

User: How could I change a.out?

This trace illustrates the use of curiosity. PAGAN is curious about the goal of changing a

binary file. PAGAN therefore chains on the user's goal of changing the binary file, infer

ring the goal of changing the effect of the program.

User: How could I change a.out?

Interpretation produced by the parser: TELL-ACTION38

The first three goals inferred by PAGAN are instrumental goals, so chaining

continues from each of them.

Determining whether to chain on TELL-ACTION38.

Determining whether TELL-ACTION38 is a complete explanation of

(HOW COULD I CHANGE A OUT).

Determining whether TELL-ACTION38 is outside of uc's domain of expertise.

TELL-ACTION38 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION38 is an incomplete explanation of

(HOW COULD I CHANGE A OUT).

Determining whether TELL-ACTION38 is an instrumental goal.

TELL-ACTION38 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on TELL-ACTION38.

Determining whether TELL-ACTION38 is grounded in the preceding dialogue.

TELL-ACTION38 was not grounded in the preceding dialogue.

Found PLANFOR4 as an explanation for TELL-ACTION38.

Synopsis:
Goal: know something;

Step 1: ask;

Step 2: be told.
Inferred goal is KNOWING-THATIS.

Determining whether to chain on KNOWING-THATIS.

Determining whether KNOWING-THATIS is a complete explanation ofTELL-ACTION38.

Determining whether KNOWING-THATIS is outside of uc's domain of expertise.

KNOWING-THATIS is not outside ofuc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-THA TIS is an incomplete explanation of TELL-ACTION38.

Determining whether KNOWING-THATIS is an instrumental goal.

KNOWING-THATIS is an instrumental goal.

The explanation is incomplete.

Chaining should be done on KNOWING-THATIS.

Determining whether KNOWING-THAT1S is grounded in the preceding dialogue.

KNOWING-THA TIS was not grounded in the preceding dialogue.

Found PLANFOR8 as an explanation for KNOWING-THATIS.

Synopsis:

Goal: Achieve X;

Step 1: Know how to X;

Step 2: Do X

Inferred goal is CHANGE-EVENT3.

The next goal, CHANGE-EVENT3 (which represents changing the file a.out), is

not an instrumental goal, nor is there a strong expectation for a particular ac
tion. However, the goal of changing an executable file arouses interest in

PAGAN,· thus, chaining continues.

Determining whether to chain on CHANGE-EVENT3.

139

140

Determining whether CHANGE-EVENT3 is a complete explanation of KNOWING-THATlS.

Determining whether CHANGE-EVEJ\'T3 is outside of uc's domain of expertise.

CHANGE-EVENT3 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether CHANGE-EVENT3 is an incomplete explanation ofKNOWING-THATlS.

Determining whether CHANGE-EVENT3 is an instrumental goal.

CHANGE-EVENT3 is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is no strong expectation for a particular action.

The explanation is not necessarily incomplete.

Determining the level of curiosity about CHANGE-EVENT3.

Determining the level of interest in CHANGE-EVENT3.

Interest level= 4.
Determining the level to which the goal CHANGE-EVENT3 conflicts with system goals.

Conflict level= o.
Curiosity level = 4.
Determining estimated cost of chaining on CHANGE-EVENT3.

Estimated cost = 1.

Chaining should be done on CHANGE-EVENT3.

Determining whether CHANGE-EVENT3 is grounded in the preceding dialogue.

CHANGE-EVENT3 was not grounded in the preceding dialogue.

Found PLANFOR9 as an explanation for CHANGE-EVENT3.

Synopsis:
Goal: change program effect;
Step 1: Change the program's binary file

Inferred goal is CHANGE-PROGRAM-EFFECTO.

The newly-inferred goal is the goal of changing the effects of the program.

This goal does not arouse curiosity in PAGAN, so chaining stops.

Determining whether to chain on CHANGE-PROGRAM-EFFECTO.

Determining whether CHANGE-PROGRAM-EFFECTO is a complete explanation of

CHANGE-EVENT3.

Determining whether CHANGE-PROGRAM-EFFECTO is outside of UC's domain of

expertise.
CHANGE-PROGRAM-EFFECTO is not outside of UC's domain of expertise.

The explanation is not necessarily complete.

Determining whether CHANGE-PROGRAM-EFFECTO is an incomplete explanation of

CHANGE-EVENT3.

Determining whether CHANGE-PROGRAM-EFFECTO is an instrumental goal.

CHANGE-PROGRAM-EFFECTO is not an instrumental goal.

Determining whether there is a strong expectation for a particular action.

There is no strong expectation for a particular action ..

The explanation is not necessarily incomplete.

Determining the level of curiosity about CHANGE-PROGRAM-EFFECTO.

Determining the level of interest in CHANGE-PROGRAM-EFFECTO.

Interest level = o.
Determining the level to which the goal CHANGE-PROGRAM-EFFECTO conflicts with

system goals.
Conflict level = o.

Curiosity level = o.
Determining estimated cost of chaining on CHANGE-PROGRAM-EFFECTO.

Estimated cost = 1.

Chaining should not be done on CHANGE-PROGRAM-EFFECTO.

8.5. Summary

141

Once it infers the motivating goal of an utterance, a goal analyzer must determine

whether that goal should itself be explained. A variety of methods for making this deter

mination have been put forward in the literature. In this chapter, I attempted to place

those methods that seem justifiable into a unified framework. This framework is centered

on a determination of whether the explanation is complete, as described in Chapter 3. If

the explanation is complete, chaining is stopped. If the explanation is incomplete, then

goal analysis is continued. However, if it cannot be determined whether the explanation

is complete, then the system must weigh the strength of its interest in continuing the

analysis against the estimated cost of doing so.

Chapter 9

Implementation and Extended Example

9.1. Implementation of KODIAK

Many of the ideas described herein rely for their implementation on aspects of the

KODIAK knowledge representation system. KODIAK has been described extensively by

Wilensky [1987a] and by Norvig [1987]. I will describe here only differences between

PAGAN's version of KODIAK and these previous approaches.

A significant point of difference from previous implementations is that PAGAN's

implementation of KODIAK allows the parallel development of rival knowledge struc

tures, that is, of multiple potentially mutually exclusive representations. For example, it

allows two potential explanations of an utterance to co-exist in the knowledge base.

These rival structures do not interact; they are completely isolated from one another. At

any point in PAGAN's processing, a branch-point may be introduced. Each branch has

available to it all of the knowledge introduced before the branching. However,

knowledge introduced after the branching is visible only in the branch that created it.

Once a particular branch has been selected as the correct one, it can be made the basis for

all future inferences. However, it is always possible to go back to a branch that was pre

viously rejected and continue its development.

The use of a branching mechanism eliminates the need for backup, and greatly

reduces the need for a non-monotonic abductive reasoning mechanism. This is because

competing knowledge structures can be developed in parallel, and the decision as to

which structure to trust can be delayed as long as necessary.

Parallel development is achieved through the use of keyed knowledge. Each fact

in the knowledge base has an associated key. These keys are hierarchically organized

according to the branching structure that has been introduced by PAGAN (or by some

other component of the system). When retrieving facts from the knowledge base, a key

is provided; only facts that are keyed with this key or one of its ancestors are returned.

142

143

For example, suppose that PAGAN is entertaining two rival explanations for utter

ance U, called A and B. Furthermore, suppose that A is itself explained either by X or by

Y, and B is explained by z. In this example then, there are two branch-points: one at u,
and the other at A. A picture of these relationships is shown in Figure 9 .1. At the left of

the picture is the hierarchy of sets of KODIAK objects that compose the explanations, and

at the right is the hierarchy of keys associated with each set.

Explanation X

Explanatioo A

Long Term
Knowledge

Base

I
UucranceU

Explanation Y

Explanation B

Explanation Z

Figure 9.1. A Hierarchy of Explanations and their Keys

When PAGAN needs to retrieve a fact from the knowledge base, it provides

KODIAK with a key. In searching for the fact, KODIAK examines only knowledge based

on that key or one of that key's ancestors. For example, suppose that in evaluating expla

nation Y, PAGAN needs to collect all the relations in which one of the components (call it

C) of explanation A takes part. Since it is examining explanation Y, PAGAN uses KY as

the search key. Although Cis part of explanation A, and therefore has been created with

key KA, it nonetheless may take part in relations with keys KX and KY. Since key KY has

been provided as the search key though, only relations built on key KY or one of its

ancestors will be retrieved. That is, the relations returned by KODIAK will be composed

entirely of concepts that are part of the long-term knowledge base, the representation of

utterance U, explanation A, and explanation Y. Thus, explanation X and explanation Bare

effectively invisible to PAGAN when it is using key KY.

144

9.2. System Architecture and Performance

PAGAN was developed in conjunction with a parser, and the version of KODIAK

described above. The parser, based on the ALANA parser [Cox 1986], is a bottom-up

chart-based parser. Associated with each grammar rule is a Lisp function that builds the

semantics of the left-hand side of the rule out of the semantics of the components of its

right-hand side. These functions are applied only after the input sentence has been com

pletely parsed. If there are multiple syntactic parses, a separate key (as described above)

is used in building the semantics for each of them.

The processes of concretion and equation (see Chapter 5) are built into the

KODIAK interpreter. As each new concept is entered into the knowledge base by the

parser, these processes are automatically invoked. Thus, much of the categorization

required by PAGAN has already been completed by the time PAGAN is given the represen

tation of the user's utterance.

PAGAN's operation proceeds as described in the preceding chapters. During its

processing, PAGAN builds a model of the dialogue. This model contains representations

of each of the plans and goals that PAGAN infers to explain the user's utterances. This

network of plans and goals is PAGAN's output. It is up to the remainder of the system to

decide which of these goals should be addressed, and which of these plans should be con

tinued. See Chin [1988] for a description of how uc makes these decisions.

PAGAN is implemented in Common Lisp with Explorer extensions on a TI

Explorer II Lisp machine. It occupies about 3000 lines of code. The initial knowledge

base contains approximately 500 KODIAK concepts. Processing of an average utterance

(such as a single question) from parsing through goal analysis by PAGAN takes approxi

mately 40 seconds. The bulk of this time is spent traversing the KODIAK network; speed

has largely been sacrificed for safety and convenience.

9.3. Detailed Trace

In this section, I present a detailed trace of PAGAN's processing of the exchange:

uc: Is the file in your directory?
User: It is in /tmp.

I have used this and similar examples throughout this dissertation to demonstrate various

points. Here I provide the entire trace of the processing of this exchange. PAGAN's pro

cessing of UC' s question and of the user's response are both included.

uc: Is the file in your directory?

This portion of the trace reflects PAGAN's processing of UC' s own question.

First, the question is parsed, and a semantic interpretation (TELL-ACTION43)

is produced.

Applying semantics for TO-BE => IS

Applying semantics for ARTICLE=> THE

Applying semantics for NOMINAL=> FILE

Applying semantics for NP2 => ARTICLE NOMINAL

Applying semantics for NP => NP2

Applying semantics for PREPOSITION => IN

Applying semantics for POSSESSIVE=> YOUR

Applying semantics for NOMINAL=> DIRECTORY

Applying semantics for NP2 => POSSESSIVE NOMINAL

Applying semantics for NP => NP2

Applying semantics for PP => PREPOSITION NP

Applying semantics for SENTENCE => TO-BE NP PP

Here, the speaker of the utterance is equated with the actor of the utterance

(which has already been set to UC).

Equating the range of SPEAKER39 (which is ANIMATE)

with the range of ACTORS8 (which is UJ\'IX-CONSULTANT).

Because the thing told by uc is a verification question, TELL-ACTION43 is au

tomatically concreted first to an ASK-QUESTION, then to an ASK

VERIFICATION-QUESTION.

Concreting TELL·ACTION43 to be ASK-QUESTION.

Concreting UTTERANCE42 to be UTTERANCE-OF-ASK-QUESTION.

Concreting TELL-ACTION43 to be ASK-VERIFICATION-QUESTION.

Concreting UTTERANCE42 to be UTTERANCE-OF-ASK-VERIFICATION-QUESTION.

Here is the representation ofUC' s utterance produced by the parser.

The parser produced the following interpretation:

Interpretation 1 (TELL-ACTION43):

(HAS-GOAL106 (DOMAIN UNIX-CONSULTANT)

(RANGE

(TELL·ACTION43 (DOMINATED BY ASK-VERIFICATION-QUESTION)

(ACTORS8 =UNIX-CONSULTANT) (HEARER40 =USER)

(SPEAKER39 =UNIX-CONSULTANT)

(UTTERANCE42 =

(VERIFICATION-QUESTIONlS (DOMINATED BY VERIFICATION-QUESTION)

(WHAT-IS31 =

(LOCATION-OFlO (DOMINATED BY LOCATION-OF)

(LOCATEDlO = (FILE24 (DOMINATED BY FILE)))

(LOCATIONlO =

(DIRECTORY6 (DOMINATED BY DIRECTORY) (OWNS9* =USER))))))))))

145

146

First, PAGAN checks to make sure that there is no conflict between this in
terpretation and the user model.

Attempting to resolve any ambiguities in TELL-ACTION43

Retrieving potential conflicts with TELL-ACTION43 and its plan.

No conflict found.

Next, PAGAN determines whether any further analysis is necessary. It decides
that the goal of asking the question is an instrumental goal, and therefore that
processing should go forward.

Determining whether to chain on TELL-ACTION43.

Determining whether TELL-ACTION43 is a complete explanation of

(IS THE FILE IN YOUR DIRECTORY).

Determining whether TELL-ACTION43 is outside of uc's domain of expertise.

TELL-ACTION43 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION43 is an incomplete explanation of

(IS THE FILE IN YOUR DIRECTORY).

Determining whether TELL-ACTION43 is an instrumental goal.

TELL-ACTION43 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on TELL-ACTION43.

PAGAN now tries to find an explanation/or the question. It starts by determin
ing whether the question is grounded in the preceding dialogue. Since in this
example there is no previous dialogue, no grounding is found.

Attempting to find an explanation for TELL-ACTION43.

Determining whether TELL-ACTION43 is grounded in the preceding dialogue.

TELL-ACTION43 was not grounded in the preceding dialogue.

An explanation is now sought among the planfors in long-term memory. An
applicable planfor is found. This planfor states that to know whether a condi
tion holds, ask whether it holds and receive a reply. PAGAN incorporates a
copy of this planfor into the dialogue model, automatically making the ap
propriate concretions in the process.

Trying to find planfor explanations for TELL-ACTION43.

Found PLANFOR2 as an explanation for TELL-ACTION43.

Synopsis:
Goal: Know whether f(X) = Y;

Step 1: Ask whether f(X) = Y;

Step 2: Hearer says yes or no.
Equating the range of KNOWN40 (which is THING)

with the range of WHAT-IS31 (which is LOCATION-OFlO).

Equating the range ofKNOWER40 (which is Al\1MATE)

with the range of SPEAKER39 (which is UNIX-CONSULTANT).

Inferred goal is KNOWING-WHETHER19.

I

'

Explanation found for TELL-ACTION43.

Again, PAGAN verifies that there is no conflict between the newly-inferred goal

and the user model.

Attempting to resolve any ambiguities in KNOWING-WHETHER19

Retrieving potential conflicts with KNOWING-WHETHER19 and its plan.

No conflict found.

PAGAN must now determine whether to chain on the new goal. Once again,
the goal is an instrumental goal, so processing continues.

Determining whether to chain on KNOWING-WHETHER19.

147

Determining whether KNOWING-WHETHER19 is a complete explanation of TELL-ACTION43.

Determining whether KNOWING-WHETHER19 is outside ofUC's domain of expertise.

KNOWING-WHETHER19 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-WHETHER19 is an incomplete explanation of

TELL-ACTION43.

Determining whether KNOWING-WHETHER19 is an instrumental goal.

KNOWING-WHETHER19 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on KNOWING-WHETHER19.

An explanation is now sought for the newly-inferred goal. Lacking any previ
ous dialogue, no grounding can be performed.

Attempting to find an explanation for KNOWING-WHETHER19.

Determining whether KNOWING-WHETHER19 is grounded in the preceding dialogue.

KNOWING-WHETHER19 was not grounded in the preceding dialogue.

A planfor explanation is found. This planfor states, roughly, that to know
something, know that it has a particular value. Again, the appropriate equa

tions are made when the dialogue structure is augmented.

Trying to find planfor explanations for KNOWING-WHETHER19.

Found PLANFORl as an explanation for KNOWING-WHETHER19.

Synopsis:
Goal: Know f(X);

Step 1: Know that f(X) = Y

Equating the range of KNOWN41 (which is THING)

with the range of KNOWN40 (which is LOCA TION-OFlO).

Equating the range ofKNOWER41 (which is ANIMATE)

with the range ofKNOWER40 (which is trr\'IX-CONSULTANT).

Inferred goal is KNOWING-THAT20.

Explanation found for KNOWING-WHETHER19.

No conflicts are found between the newly-inferred goal and the user model.

Attempting to resolve any ambiguities in KNOWING-THAT20

Retrieving potential conflicts with KNOWING-THAT20 and its plan.

148

No conflict found.

PAGAN decides that chaining should be done on the new goal, since it is an in

strumental goal.

Determining whether to chain on KNOWING-THAT20.

Determining whether KNOWING-THAT20 is a complete explanation of

KNOWING-WHETHER19.

Determining whether KNOWING-THAT20 is outside of uc's domain of expertise.

KNOWING-THAT20 is not outside ofuc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-THAT20 is an incomplete explanation of

KNOWING-WHETHER19.

Determining whether KNOWING-THAT20 is an instrumental goal.

KNOWING-THAT20 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on KNOWING-THAT20.

I have not supplied PAGAN with any knowledge about why UC might want to

know the location of a file, so PAGAN's processing of uc' s utterance stops at

this point.

Attempting to find an explanation for KNOWING-THAT20.

Determining whether KNOWING-THAT20 is grounded in the preceding dialogue.

KNOWING-THAT20 was not grounded in the preceding dialogue.

Trying to find planfor explanations for KNOWING-THAT20.

No planfor explanations found for KNOWING-THAT20.

Determining whether KNOWING-THAT20 is explained by a theme.

KNOWING-THAT20 was not explained by a theme.

No explanation found for KNOWING-THA no.

Next, the user's response is analyzed. Since the parser is unable to determine

the referent of 'it,' two interpretations are produced.

User: It is in /tmp.

Applying semantics for NP => IT

Applying semantics for TO-BE => IS

Applying semantics for PREPOSITION => IN

Applying semantics for NP => /fMP

Applying semantics for PP => PREPOSITION NP

Applying semantics for SENTENCE => NP TO-BE PP

Equating the range of SPEAKER40 (which is ANIMATE)

with the range of ACTOR59 (which is USER).

Concreting TELL-ACTION44 to be MAKE-STATEMENT.

Applying semantics for NP =>IT

Applying semantics for TO-BE=> IS

Applying semantics for PREPOSITION =>IN

Applying semantics for NP => /fMP

Applying semantics for PP =>PREPOSITION NP

Applying semantics for SENTENCE=> NP TO-BE PP

Equating the range of SPEAKER41 (which is ANIMATE)

with the range of ACTOR60 (which is USER).

Concreting TELL-ACTION45 to be MAKE-STATEMENT.

The parser produced the following interpretations:

In the first interpretation, the user is indicating the location of the file.

Interpretation 1 (TELL-ACTION44):

(HAS-GOAL109 (DOMAIN USER)

(RANGE

(TELL-ACTION44 (DOMINATED BY MAKE-STATEMENT) (ACTOR59 =USER)

(HEARER41 = UNIX-CONSULTAJ\'T) (SPEAKER40 =USER)

(UTTERANCE43 =

(LOCATION-OFll (DOMINATED BY LOCATION-OF)

(LOCATEDll = (FILE25 (DOMINATED BY FILE)))

(LOCATIONll = SLASH-TMP))))))

In the second interpretation, the user is indicating the location of the directory.

Interpretation 2 (TELL-ACTION45):

(HAS-GOALllO (DOMAIN USER)

(RANGE

(TELL-ACTION45 (DOMINATED BY MAKE-STATEMENT) (ACTOR60 =USER)

(HEARER42 =UNIX-CONSULTANT) (SPEAKER41 =USER)

(UTTERANCE44 =

(LOCATION-OF12 (DOMINATED BY LOCATION-OF)

(LOCATED12 = (DIRECTORY7 (DOMINATED BY DIRECTORY)))

(LOCATION12 = SLASH-TMP))))))

Attempting to resolve any ambiguities in TELL-ACTION45

Retrieving potential conflicts with TELL-ACTION45 and its plan.

No conflict found.

Since this is an instrumental goal, processing continues on the 'directory' in

terpretation.

Determining whether to chain on TELL-ACTION45.

Determining whether TELL-ACTION45 is a complete explanation of (IT IS IN /fMP).

Determining whether TELL-ACTION45 is outside of uc's domain of expertise.

TELL-ACTION45 is not outside ofuc's domain of expertise.

The explanation is not necessarily complete.

Determining whether TELL-ACTION45 is an incomplete explanation of (IT IS IN /fMP).

Determining whether TELL-ACTION45 is an instrumental goal.

149

150

TELL-ACTION45 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on TELL-ACTION45.

Attempting to resolve any ambiguities in TELL-ACTION44

Retrieving potential conflicts with TELL-ACTION44 and its plan.

No conflict found.

Chaining should also be done on the 'file' interpretation.

Deteimining whether to chain on TELL-ACTION44.

Deteimining whether TELL-ACTION44 is a complete explanation of (IT IS IN /fMP).

Deteimining whether TELL-ACTION44 is outside of uc's domain of expertise.

TELL-ACTION44 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Deteimining whether TELL-ACTION44 is an incomplete explanation of (IT IS IN /fMP).

Deteimining whether TELL-ACTION44 is an instrumental goal.

TELL-ACTION44 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on TELL-ACTION44.

PAGAN now looks for an explanation of the 'file' interpretation. Since there

has been previous dialogue, grounding is more complex than in the processing

of the previous utterance. PAGAN must check both to see whether this goal

matches an expectation, and whether it represents a new plan for an existing

goal. Neither condition holds, so the 'file' interpretation has not yet been

grounded.

Attempting to find an explanation for TELL-ACTION44.

Deteimining whether TELL-ACTION44 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION44 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION44 to be INDICATE-YES-OR-NO.

TELL-ACTION44 was not grounded in INDICATE-YES-OR-NO because:

Can't concrete UTTERANCE43 to UTTERANCE-OF-INDICATE-YES-OR-NO because the

ranges differ.
Deteimining whether TELL-ACTION44 is a new plan for the existing goal of

KNOWING-WHETHER19

TELL-ACTION44 is not a new plan for the existing goal of KNOWING-WHETHER19 because:

Attempt to concrete incompatibly from TELL-ACTION44 to KNOWING-WHETHER19.

TELL-ACTION44 was not grounded in the preceding dialogue.

Now, PAGAN tries to find a planfor explanation for the utterance under the

'file' interpretation. It finds an applicable planfor, which states that telling

something to someone is a plan for the goal of that person knowing whether it

is true.

Trying to find planfor explanations for TELL-ACTION44.

Found PLANFOR3 as an explanation for TELL-ACTION44:

Synopsis:
Goal: hearer know whether X;

Step 1: Tell hearer that X.

Equating the range of KNOWN42 (which is THING)

with the range ofUTTERANCE43 (which is LOCATION-OFll).

Equating the range ofKNOWER42 (which is AI\'IMATE)

with the range of HEARER41 (which is UNIX-CONSULT ANT).

Inferred goal is KNOWING-WHETHER20.

Explanation found for TELL-ACTION44.

An explanation is also sought for the 'directory' interpretation. This process

ing exactly parallels the processing done for the 'file' interpretation above.

Attempting to find an explanation for TELL-ACTION45.

Determining whether TELL-ACTION45 is grounded in the preceding dialogue.

Trying to ground TELL-ACTION45 in INDICATE-YES-OR-NO.

Concreting TELL-ACTION45 to be INDICATE-YES-OR-NO.

TELL-ACTION45 was not grounded in INDICATE-YES-OR-NO because:

Can't concrete UTTERAI"CE44 to UTTERANCE-OF-INDICATE-YES-OR-NO because the

ranges differ.

Determining whether TELL-ACTION45 is a new plan for the existing goal of

KNOWING-WHETHER19

TELL-ACTION45 is not a new plan for the existing goal of KNOWmG-WHETHER19 because:

Attempt to concrete incompatibly from TELL-ACTION45 to KNOWING-WHETHER19.

TELL-ACTION45 was not grounded in the preceding dialogue.

Trying to find planfor explanations for TELL-ACTION45.

Found PLANFOR3 as an explanation for TELL-ACTION45.

Synopsis:

Goal: hearer know whether X;

Step 1: Tell hearer that X.

Equating the range of KNOWN43 (which is THING)

with the range ofUTTERANCE44 (which is LOCATION-OF12).

Equating the range ofKNOWER43 (which is Al'i1MATE)

with the range ofHEARER42 (which is UNIX-CONSULTANT).

Inferred goal is KNOWING-WHETHER21.

Explanation found for TELL-ACTION45.

PAGAN now examines the 'directory' interpretation to determine whether the

ambiguity can be resolved. However, no conflict is found with the user model.

Of course, with a more knowledgable user model, the ambiguity might be

resolved here.

Attempting to resolve any ambiguities in KNOWING-WHETHER21

Retrieving potential conflicts with KNOWING-WHETHER21 and its plan.

No conflict found.

151

152

Chaining should be performed on the 'directory' interpretation, because the

newly-inferred goal is an instrumental goal.

Determining whether to chain on KNOWING-WHETHER21.

Determining whether KNOWING-WHETHER21 is a complete explanation of TELL-ACTION45.

Determining whether KNOWING-WHETHER21 is outside ofuc's domain of expertise.

KNOWING-WHETHER21 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-WHETHER21 is an incomplete explanation of

TELL-ACTION45.

Determining whether KNOWING-WHETHER21 is an instrumental goal.

KNOWING-WHETHER21 is an instrumental goal.

The explanation is incomplete.

Chaining should be done on KNOWING-WHETHER21.

The same processing is done on the 'file' interpretation.

Attempting to resolve any ambiguities in KNOWING-WHETHER20

Retrieving potential conflicts with KNOWING-WHETHER20 and its plan.

No conflict found.

Determining whether to chain on KNOWING-WHETHER20.

Determining whether KNOWING-WHETHER20 is a complete explanation of TELL-ACTION44.

Determining whether KNOWING-WHETHER20 is outside ofuc's domain of expertise.

KNOWING-WHETHER20 is not outside of uc's domain of expertise.

The explanation is not necessarily complete.

Determining whether KNOWING-WHETHER20 is an incomplete explanation of

TELL-ACTION44.

Determining whether KNOWING-WHETHER20 is an instrumental goal.

KNOWING-WHETHER20 is an instrumental goal.

The explanation is incomplete.
Chaining should be done on KNOWING-WHETHER20.

Now, PAGAN tries to explain why VC might want to know the location of the

file. First, it checks to see whether this goal satisfies an expectation set up by

the previous utterance.

Attempting to find an explanation for KNOWING-WHETHER20.

Determining whether KNOWING-WHETHER20 is grounded in the preceding dialogue.

Trying to ground KNOWING-WHETHER20 in INDICATE-YES-OR-NO.

KNOWING-WHETHER20 was not grounded in INDICATE-YES-OR-NO because:

Attempt to concrete incompatibly from KNOWING-WHETHER20 to INDICATE-YES-OR-NO.

Next, PAGAN determines whether this goal represents a new plan for VC' s

goal. This time it is successful, and VC' s old plan is discarded.

Determining whether KNOWING-WHETHER20 is a new plan for the existing goal of

KNOWING-WHETHER19

Concreting KNOWING-WHETHER20 to be KNOWING-WHETHER19.

KNOWING-WHETHER20 is a new plan for the existing goal of KNOWING-WHETHER19

Existing plan PLAN106 has been rejected; new plan is PLAN109.

The entire chain of plans and goals that underlie KNOWING-WHETHER20 is

selected as the correct interpretation of the user's utterance. The competing

explanations, derived from the interpretation of 'it' as 'directory,' are reject

ed. This completes PAGAN's processing.

Selecting KNOWING-WHETHER20 as the correct explanation ofTELL-ACTION44

Selecting TELL-ACTION44 as the correct explanation of (IT IS IN /fMP)

Rejecting TELL-ACTION45 as an explanation of (IT IS IN /fMP).

Rejecting KNOWING-WHETHER21 as an explanation ofTELL-ACTION45.

Explanation found for KNOWING-WHETHER20.

153

Chapter 10

Conclusions

Artificial Intelligence programs tend to be hacks. In many ways, PAGAN is not an
exception to this rule. One way to introduce a degree of theoretical grounding into an AI
system is to provide a method for evaluating its output. The criteria listed in Chapter 3
are an attempt to address this issue. They have proved their usefulness by guiding
PAGAN's development. To the extent that they accurately reflect what it means to be a
good explanation, they have helped to give PAGAN some theoretical grounding.

The biggest problem facing plan recognition systems is ambiguity. The number of
ways that a particular sentence might be viewed as ambiguous is striking. Yet people

rarely view a normal utterance as ambiguous. Ambiguity is resolved through recourse to
additional knowledge held by the system that was not taken into account in producing the
competing interpretations. The two most important sources of such knowledge are the
user model and the dialogue model. User models in particular will become increasingly

important to plan recognizers in the future.

The adoption of an appropriate representation is an important step in restricting
ambiguity. Intended recognition should be modeled by representations that capture that
intentionality. Traditional representations have included all of the effects of a plan. In
this thesis, I have argued that a representation such as a planfor that focuses on the effect
that is typically intended should be used for plan recognition.

The most difficult part of the implementation of PAGAN was the specification of
world knowledge. KODIAK provides a flexible tool for representation, and provides a
number of useful built-in inference mechanisms. However, it lends very little guidance
as to what should be represented (in the way that Conceptual Dependency [Schank and
Abelson 1977] did for example) .. In other words, while the KODIAK interpreter is itself
quite robust, the representations contained in the knowledge base are not. Many of the
bugs that arose during the implementation of PAGAN were not problems with the code,
but rather problems with the knowledge base. These problems were of two main classes.

First, it was fairly easy to use existing concepts incorrectly. Secondly, it was often
unclear exactly how new knowledge should be expressed. The former problem can be

154

...

-

...

155

ameliorated through the introduction of more sophisticated tools for encoding knowledge

than were available for the development of PAGAN. The latter problem is less easily

dealt with. During the development of PAGAN, I would often find that two or more itera

tions were required before a particular concept was adequately represented. I expect this

problem to remain as long as knowledge must be hand-coded, and must remain immut

able once it has been entered.

This suggests two ways around the problem of knowledge encoding. First, new

knowledge could be automatically generated and entered into the knowledge base. For

example, explanation-based learning provides some hope that planfor knowledge could

be automatically generated. See Braverman and Russell [1988] for a discussion of the

problems in automatically creating planning knowledge.

The second way that this problem might be dealt with is by allowing knowledge

entered into the system to dynamically rearrange itself. The person entering knowledge

could then be relatively sloppy about the representations chosen; the system would be

responsible for rearranging the initial representations in some coherent fashion. I expect

that one or both of these approaches will be required by future large-scale plan recogni

tion systems.

One final note is in order on the future of plan recognition systems. Current sys

tems almost invariably attempt to answer the question "Why did the speaker say X?" I

suspect that to become truly proficient at their task, plan recognition systems in the future

will have to address not only this question, but also the question ''Why didn't the speaker

say Y?" As in bridge bidding, answering this latter question may provide far more infor

mation than answering the former question alone.

Plan recognition, dialogue modeling, and user modeling can all benefit from such

an approach. For example, the fact that a user did not use the standard term for a particu

lar concept might indicate to the user model that the user does not know that term, and is

likely to be unfamiliar with the concept in general. This conclusion could not be sup

ported solely by an analysis of what the user did say. Or, the use of a noun where a pro

noun would have been perfectly acceptable might indicate to a dialogue model that there

is a discrepency between the system's understanding of the dialogue and the user's

understanding of the dialogue. Such a discrepency could not be detected simply by con

sidering what the user did say, because the use of the noun conveys the same semantic

information as the use of the appropriate pronoun. Finally, expectation matching is an

example of how this approach is already useful in goal analysis. When the user's utter

ance does not conform to an expectation held by the system, what was not said can be

just as important to PAGAN's processing of the utterance as what was said .

References

James F. Allen. A Plan-Based Approach to Speech Act Recognition. Doctoral disserta

tion. Technical Report 131n9, Department of Computer Science, University of

Toronto, 1979.

James F. Allen and C. Raymond Perrault. Analyzing intention in utterances. Artificial

Intelligence 15(3):143-178, 1980.

James F. Allen, Alan M. Frisch, and Diane J. Litman. ARGOT: the Rochester dialogue

system. In Proceedings of the National Conference on Artificial Intelligence, Los

Altos, CA: Morgan Kaufmann Publishers, 1982.

Douglas E. Appelt Planning English referring expressions. Artificial Intelligence

26(1):1-33, 1985.

J. L. Austin. How To Do Things With Words. Second edition. Harvard University Press,

1962.

Lawrence Birnbaum. Lexical ambiguity as a touchstone for theories of language

analysis. In Proceedings of the Ninth International Joint Conference on Anificial

Intelligence, Los Altos, CA: Morgan Kaufmann Publishers, 1985.

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay, Donald A. Norman, Henry Thomp

son, and Terry Winograd. GUS, a frame-driven dialog system. Artificial Intelli

gence 8(2): 155-173, 1977.

Ronald J. Brachman and James G. Schmolze. An ov~rview of the KL-ONE knowledge

representation system. Cognitive Science 9(2):171-216, 1985

156

157

Michael S. Braverman and Stuart J. Russell. IMEX: Overcoming intractability in expla
nation based learning. In Proceedings of the National Conference on Artificial
Intelligence, Los Altos, CA: Morgan Kaufmann Publishers, 1988.

Sandra Carberry. Tracking user goals in an information-seeking environment. In
Proceedings of the National Conference on Artificial Intelligence, Los Altos, CA:
Morgan Kaufmann Publishers, 1983.

Sandra Carberry. TRACK: Toward a robust natural language interface. In Proceedings
of the Canadian National Conference on Artificial Intelligence, 1986a.

Sandra Carberry. User models: The problem of disparity. In Proceedings of the
Eleventh International Conference on Computational Linguistics, Los Altos, CA:
Morgan Kaufmann Publishers, 1986b.

David Ngi Chin. Intelligent Agents as a Basis for Natural Language Interfaces. Doc
toral dissertation. Technical Report UCB/CSD 88/396, Computer Science Division,
University of California, Berkeley, 1988.

Charles A. Cox. ALANA: Augmentable LANguage Analyzer. Master•s thesis. Techni
cal Report UCB/CSD 86/283, Computer Science Division, University of California,
Berkeley, 1986.

Jon Doyle. A truth maintenance system. Artificial Intelligence 12(3):231-272, 1979.

Gilles Fauconnier. Mental Spaces: Aspects of Meaning Construction in Natural
Language. The MIT Press, 1985.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence 2:189-208, 1971.

Barbara J. Grosz. The representation and use of focus in a system for understanding dia
logs. In Proceedings of the Fifth International Joint Conference on Artificial Intel
ligence, Los Altos, CA: Morgan Kaufmann Publishers, 1977.

Barbara J. Grosz. Focusing in dialog. In Proceedings of TINLAP-2. Urbana
Champagne, IL, 1978.

Barbara Grosz and Candace L. Sidner. The structures of discourse structure. Technical
Report CSLI-85-39, Center for the Study of Language and Information. 1985.

Matthias Hecking. How to use plan recognition to improve the abilities of the intelligent
help system SINIX Consultant. Technical Report 21, Department of Computer Sci
ence, University of Saarbruecken, W. Germany, 1987.

158

Matthias Reeking, Christel Kemke, Erich Nessen, Dietmar Dengler, Michael Gutmann
and Giinter Hector. The SINIX Consultant -- A progress report. Memo 28, Depart
ment of Computer Science, University of Saarbruecken, W. Germany, 1988.

James Hendler. Integrating Marker-Passing and Problem Solving: A Spreading Activa
tion Approach to Improved Choice in Planning. Doctoral Dissertation. Technical
Report TR-1624, Department of Computer Science, University of Maryland, Col
lege Park, 1986. Also published as Technical Report TR-86-01, Brown University,
1986.

Julia Hirschberg. Toward a redefinition of yes/no questions. In Proceedings of the Tenth
International Conference on Computational Linguistics, 1984.

Christel Kemke. The SINIX Consultant: Requirements, design, and implementation of an
intelligent help system for a UNIX derivative. Technical Report 11, Department of
Computer Science, University of Saarbruecken, W. Germany, 1986.

Alfred Kobsa and Wolfgang Wahlster, eds. The Relationship Between User Models and
Discourse Models: Two Position Papers. Technical Report 27, Department of
Computer Science, University of Saarbruecken, W. Germany, 1987.

Wendy G. Lehnert. A conceptual theory of question answering. In Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Los Altos, CA: Mor
gan Kaufmann Publishers, 1977.

Stephen C. Levinson. Pragmatics. Cambridge University Press, 1983.

Diane J. Litman. Plan Recognition and Discourse Analysis: An Integrated Approach for

Understanding Dialogues. Doctoral dissertation. Technical Report TR170, Univer
sity of Rochester, 1985.

Diane J. Litman and James F. Allen. A plan recognition model for clarification subdialo
gues. In Proceedings of the Tenth International Conference on Computational
Linguistics, 1984.

Marc Luria. Goal conflict concerns. In Proceedings of the Tenth International Joint
Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann Publishers,
1987.

Marc Luria. Knowledge Intensive Planning. Doctoral dissertation. Technical Report
UCB/CSD 88/433, Computer Science Division, University of California, Berkeley,
1988.

\.. 159

Steven L. Lytinen. Are vague words ambiguous? In Small et al., 1988.

William C. Mann, James A. Moore, and James A. Levin. A comprehension model for
human dialogue. In Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Los Altos, CA: Morgan Kaufmann Publishers, 1977.

Erich Nessen. SC-UM: User modeling in the SINIX Consultant. Memo 18, Department
of Computer Science, University of Saarbruecken, W. Germany, 1987.

Peter Norvig. Six problems for story understanders. In Proceedings of the National
Conference on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann Publishers,
1983.

Peter Norvig. A Unified Theory of Inference for Text Understanding. Doctoral disserta
tion. Technical Report 87/339, Computer Science Division, University of Califor
nia, Berkeley, 1987.

Martha E. Pollack. Good answers to bad questions: Goal inference in expert advice
giving. Technical Report MS-CIS-84-15, University of Pennsylvania, 1984.

Alex Quilici. Detecting and responding to plan-oriented misconceptions. In Wolfgang
Wahlster and Alfred Kobsa, Eds., User Models. Springer-Verlag, To appear.

Alexander E. Quilici, Michael G. Dyer, and Margot Flowers. Understanding and advice
giving in AQUA. Technical Report UCLA-AI-85-19, Computer Science Depart
ment, University of California, Los Angeles, 1985

Ashwin Ram. AQUA: Asking Questions and Understanding Answers. In Proceedings of
the National Conference on Artificial Intelligence, Los Altos, CA: Morgan Kauf
mann Publishers, 1987.

Elaine Rich, Jim Barnett, Kent Wittenburg, and David Wroblewski. Ambiguity procras
tination. In Proceedings of the National Conference on Artificial Intelligence, Los
Altos, CA: Morgan Kaufmann Publishers, 1987.

Roger C. Schank. Interestingness: Controlling inferences. Artificial Intelligence
12(3):273-297, 1979.

Roger C. Schank. Explanation Patterns: Understanding Mechanically and Creatively.

Hillsdale, NJ: Lawrence Erlbaum Associates, 1986.

Roger C. Schank and Robert P. Abelson. Scripts Plans Goals and Understanding. Hills
dale NJ: Lawrence Erlbaum Associates, 1977.

160

C. F. Schmidt, N. S. Sridharan, and J. L. Goodson. The plan recognition problem: An
intersection of psychology and artificial intelligence. Artificial Intelligence
11(1,2):45-83, 1978.

James G. Schmolze and Thomas A. Lipkis. Classification in the KL-ONE knowledge
representation system. In Proceedings of the Eighth International Joint Conference
on Artificial Intelligence, Los Altos, CA: Morgan Kaufmann Publishers, 1983.

Ethel Schuster and Timothy W. Finin" Understanding misunderstandings. Technical
Report MS-CIS-83-12, Department of Computer and Information Science, Univer
sity of Pennsylvania, 1983.

John R. Searle. Speech Acts. Cambridge University Press, 1969.

Candace L. Sidner. Plan parsing for intended response recognition in discourse. Compu
tational Intelligence 1(1):1-10, 1985.

Steven L. Small, Garrison W. Cottrell, and Michael K. Tanenhaus, eds. Lexical Ambi
guity Resolution. San Mateo, CA: Morgan Kaufmann Publishers, 1988.

Larry Travis and Jeffrey A. Jackson. Automatic .identification and naming of complex
objects implicit in a relational database. Technical Report CS-TR-2005, Computer
Science Department, University of Maryland at College Park, 1988. Also published
as Technical Report UMIACS-TR-88-23, University of Maryland Institute for
Advanced Computer Studies, 1988.

Wolfgang Wahlster and Alfred Kobsa. Dialogue-based user models. In Proceedings of
the IEEE 74(7):948-960, 1986.

Robert Wilensky. Understanding Goal-Based Stories. Doctoral dissertation. Research
Report 140, Computer Science Department, Yale University, 1978.

Robert Wilensky. Planning and Understanding: A Computational Approach to Human
Reasoning. Reading, MA: Addison-Wesley 1983.

Robert Wilensky. Some problems and proposals for knowledge representation Technical
Report 87/351, Computer Science Division, University of California, Berkeley,
1987a.

Robert Wilensky. Primal content and actual content: An antidote to literal meaning.
Technical Report 87/365, Computer Science Division, University of California,
Berkeley, 1987b.

·

161

Robert Wilensky, James Mayfield, Anthony Albert, David Chin, Charles Cox, Marc

Luria, James Martin, and Dekai Wu. UC - A progress report. Technical Report

87/303, Computer Science Division, University of California, Berkeley, 1986.

Robert Wilensky, David Chin, Marc Luria, James Martin, James Mayfield, and Dekai

Wu. The Berkeley Unix Consultant project. To appear in Computational Linguis

tics, 1989.

